
! 4

NASA CR-54665

ONE AND TWO-DIMENSIONAL STEADY STATE LOW PRESSURE

DISCHARGE THEORY

by

E. K. Shaw

M. L. Report No. 1495

#

i

• 09 FAHOal A,Li'II_3Val

Microwave Laboratory
W. W. HANSEN LABORATORIES OF PHYSICS

STANFORD UNIVERSITY. STANFORD, CALIFORNIA

Interim Report

(Summary Report II)

Prepared for

National Aeronautics and Space Administration

Contract NAS 3-4100

_,_ECEDfNG PAGE BLANK NOT F_L,,,L,O.'_' ....



NOTICE

This report was prepared as an account of Government sponsored work°

Neither the United States, nor the National Aeronautics and Space

Administration (NASA), nor any person acting on behalf of NASA:

A.) Makes any warranty or representation, expressed or implied,

with respect to the accuracy, completeness, or usefulness

of the information contained in this report, or that the

use of any information, apparatus, method, or process

disclosed in this report may not infringe privately owned

rights; or

B.) Assumes any liabilities with respect to the use of, or for

damages resulting from the use of any information, apparatus,

method or process disclosed in this report.

As used above, "person acting on behalf of NASA" includes any employee

or contractor of NASA, or employee of such contractor, to the extent

that such employee or contractor of NASA, or employee of such contractor

prepares, disseminares, or provides access to, any information pursuant

to his employment or contract with NASA, or his employment with such

contractor.

Requests for copies of this report should be referred to

National Aeronautics and Space Administration

Office of Scientific and Technical Information

Attention: AFSS-A

Washington, D. C. 20546



ABSTRACT

w

This study was motivated by the recent upsurge of interest in ion

propulsion devices wherein thrust is obtained by accelerating ions out

of the plasma of adc discharge. In order to be able to understand and

thus improve the operation of these devices it is necessary to be able

to analyze and solve complicated one-and two-dimensional dc discharge

problems.

In this work it is shownthat a pressure theory approach, although

approximate, whenmodified to take into account ion generation can be

used to accurately describe a wide variety of dc discharges in the low-

and medium-pressure regimes. This modified pressure theory or fluid

approach makesuse of the "momentmethod" of solution of the Boltzmann

equation to obtain differential equations which describe low pressure

discharges in terms of measurable macroscopic parameters.

Solutions are found for the parameters of the discharges in one-

dimensional planar, cylindrical, and coaxial geometries for various

generation rates and including both the effects of ion-neutral collisions
and an applied magnetic field. The results for the one-dimensional

collisionless cases are comparedwith the more exact formulation of

Langmuir and found to be in good agreement.
In the limit of a small inner conductor, the one-dimensional coaxial

solutions are shownto be useful in determining the properties of cylin-

drical Langmuir probes in the ion collection regime. The results are

comparedto present collisionless probe theories and found to be in good

agreement. The one-dimensional coaxial solutions are then extended to
include the effects of collisions and an applied magnetic field on the

characteristics of a cylindrical probe.

For the most important case of ion generation proportional to

electron density, two-dimensional solutions for the parameters of the

discharges in a rectangular box, a finite length cylinder, and between

finite length concentric coaxial cylinders are found for the first time.
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Calculated parameters for both the one- and two-dimensional dis - _

charges are presented graphically for a number of representative cases

and the equations are tabulated and summarized in such a way as to be

easily applied to other cases.

The theory is also used to describe the behavior of two experi-
mental devices: the so-called oscillating-electron ion source and the

Kaufmanion source. Only qualitative agreement between experiment and

theory is obtained when the two-dimensional theory is used to approxi-

mate the behavior of the oscillating-electron ion source. However_a
one-dimensional theory which includes both primary or beamelectrons

and secondary or Maxwellian electrons is found to give good agreement
between theory and experiment for the Kaufmanion source.
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CHAPTER I

INTRODUCTION AND HISTORICAL BACKGROUND

In this work it is shown that a pressure theory, modified to take

into account generation, can be used to describe one- and two-dimensional

steady state discharges in the low pressure (collisionless) and medium

pressure regimes where the collision dominated or diffusion theory is no

longer applicable° For the first time, solutions are found for the

discharges in a two-dimensional rectangular box, a two-dimensional finite
1

length cylinder, and both one- and two-dimensional coaxial geometries.

The effects of ion neutral collisions and a uniform magnetic field are

also included in the analysis of each of the above cases. In the limit

of a small inner conductor, the one-dimensional coaxial solutions are

found to be useful in determining the properties of cylindrical Langmuir

probes thus making possible, for a first time, a quantitative study of

the effects of a magnetic field and collisions on probe characteristics

in the ion collection regime.

Using this pressure theory or Eulerian approach two different

experimental discharges are analyzed and the results compared with

experimental measurements, the first device being a so-called oscillating-

2,3
electron ion source and the second, an idealized model of the Kaufman

4
ion source. Reasonably good correlation between theory and experiment

is obtained.

This study was motivated by the recent upsurge of interest in ion

propulsion devices wherein thrust is obtained by accelerating ions out

of the plasma of a dc discharge. 3'5'6 Considerable experimental work has

been done on the Kaufman type of ion thrustor, 7-9 but in order to be able

to fully understand, analyze, and improve the operation of this device

it is necessary to be able to solve rather complicated one- and two-

dimensional dc discharge problems. Although this study is generally

directed toward analyzing discharges employing heavy ions which could

be used for ion propulsion, the results are presented in such a way as

- 1 -



to be meaningful and useful for the study of a broad range of low and

medium pressure, steady-state discharge problems which heretofore were

very difficult, if not impossible, to formulate and solve•

The foundation for nearly all the later theoretical work on low

pressure discharges was established in a classic paper by Tonks and
I0

Langmuir in 1929. They developed a collisionless theory involving a

rather complicated integral equation which they then used to solve

several simple one-dimensional problems. This theory was verified by

and used to explain a large number of experiments by Langmuir and his

ii
co-workers which extended over a period of some fifteen years• The

early theoretical work was later verified and extended by, among others,
12 -14

So A° Self in a series of papers starting in 1962, Harrison and

Thompson in 1959, I_ and Caruso and Cavaliere in 1962
16

In the intervening years between the theoretical work of Langmuir

and Self a great many experiments were carried out on various aspects

of the low-pressure discharge. As examples of this type of work we cite

the excellent experiments of Klarfeld 17 in 1938 and Bickerton and Engle 18

in 1955. Almost without exception, any theory accompanying these experi-

iO
ments is based upon the collisionless theory developed by Langmuiro

Unfortunately, as mentioned above, the formulation developed by Langmuir

leads to a complicated integral equation which cannot be easily extended

to include the intermediate region between the free-fall and collision

dominated cases or to two-dimensional problems. Indeed, it is not at

all evident that an extension of Langmuir's exact formulation to these

problems can be made° Thus, it becomes necessary to look for an approach

which does not have the limitations of Lang_uir's formulation. We have

found that a fluid or macroscopic approach, although approximate when

modified for the low pressure regime, gives meaningful results for the

parameters of low-pressure discharges. This pressure theory approach

which leads to differential equations rather than the more complicated

integral equation formulation of Langmuir is somewhat similar to that

19,20
of serssono H@._ever, several important extensions of and departures

from his approach have been made: In solving the collisionless one-

dimensional problems we have included the pressure term and the third

- 2 -
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moment equation which is known to be a more accurate approach; we have

solved the previously unsolved coaxial discharge which has useful

applications in the study of probe theory; the possibility of neutral

density variation has also been considered together with finite ion

temperatures at generation; we have successfully applied the theory to

two-dimensional discharges in rectangular, cylindrical, and coaxial

geometries including both collisions and a magnetic field; and finally

we have been able to extend the theory to include a three-component

plasma in which there are two types of electrons, primary beam elements

and the secondary Maxwellian distribution of electrons. This approximates

the behavior of the Kaufman type ion source.

The development in the following chapters proceeds in the logical

manner of increasing complexity: First, we give a discussion of the

method of solution and assumptions which define the dc discharge model°

Next, we proceed to a solution of some simple one-dimensional planar

and cylindrical discharges which are used to verify the validity of the

theory. Then we give a rather complete discussion of the heretofore unsolved

one-dimensional coaxial discharge. Next, we discuss the more complicated

two-dimensional cases. We then discuss the more difficult numerical

solution of the general dc discharge problem. Finally, we present the

application and correlation of the theory to two experimental devices°

A more detailed discussion of the contents of the various chapters follows

below.

In Chapter II, the general low pressure discharge problem is formulated

in terms of the fluid or Eulerian approach by solving the Boltzmann-

Vlasov equation using the "moment method" of solution to generate macro-

scopic equations of motion. This formulation leads to particularly useful

solutions because the parameters in the equations are relatively easily

measured quantities. In this same chapter, the limitations of the theory

and the assumptions made to simplify the problem are discussed in detail°

In Chapter III, using the theory developed in Chapter II, one-

dimensional planar and cylindrical dc discharges are solved for various

generation rates. In order to demonstrate the validity of this approach,

the results are compared to those obtained by the more exact formulation

-3-



of Langmuir and Self. I0'14 Good agreement is obtained for the parameters

of interest throughout the discharge regions. Chapter III also contains

the results obtained for the parameters of the one-dimensional coaxial

discharge both with and without ion-neutral collisions and a magnetic

field. The results are presented graphically so that the effect of

collisions and a magnetic field can be easily studied for various

coaxial geometries.

Using the solutions of the one-dimensional coaxial discharge, the

ion current to a small cylindrical probe is calculated and found to

agree very closely with other collisionless probe theories. The quantita-

tive effect of collisions and a magnetic field on the ion density near

a probe are found for the first time for the intermediate pressure regime

and a small magnetic field°

At the end of Chapter III tables summarizing all of the solutions

and equations for the one-dimensional discharge are presented with the

equations and expansions of parameters near the origin written in such

a way as to be easily programmed for computer solution of cases not

covered.

Chapter IV contains detailed results of the formulation and solution

of two-dimensional problems in rectangular, cylindrical and coaxial

geometry. As far as is known these results represent the first solutions

of this type of problem in the low and medium pressure regimes° The

effect of ion-neutral collisions is also included and for a somewhat

more restricted case an applied m.agnetic field is also considered.

Again, the equations and solutions of the two-dimensional discharges

are summarized at the end of the chapter in such a way as to make easy

the computation of cases not covered in the body of the chapter.

Numerical procedures for solving more general discharge problems

are discussed in Chapter Vo The considerable difficulties in formulating

and solving the discharge as a general boundary value problem are reviewed.

Two different numerical methods of solution are given which have been

used with some success to solve the general one-dimensional problem.

One of these methods is applied to the two-dimensional problem where a

solution is obtained for a limited range of parameters.

-4-



Although this work was intended to be mostly theoretical in nature,

the availability of a two-dimensional experimental device madeit

attractive to comparethe theoretical analysis with someexperimental

data. Somequalitative agreementbetween experiment and theory was
2

obtained for a two dimensional oscillating-electron ion source. The

results of comparing this experiment with the theory are presented in

the first part of Chapter VI. Also included in Chapter VI is the

comparison of a theoretical analysis of an idealized one-dimensional
4

model of the Kaufman type ion source, with experimental results obtained
8

at the California Institute of Technology. This analysis further

demonstrates the versatility of the pressure theory approach in that

other components which may be in the plasma such as beam or primary

cathode electrons are easily included as a third component in the

analysis.

-5-



CHAPTER II

FORMULATION OF THE PROBLEM

We are concerned in this work with solving one-a_ two-dimensional

steady-state gaseous discharge problems. More particularly, we wish

to develop mathematical models which describe plasmas in the low and

medium pressure regimes where the collision dominated theory is no

longer applicable°

In general, the low-pressure discharges which we will be discussing

in the following chapters are assumed to have the following characteristics:

Ions are generated throughout the discharge with low or zero initial

velocity and proceed toward the walls undergoing a number of collisions

with neutral atoms_ depending on the pressure. The potential has a

maximum at the center of the discharge and decreases monotonically

toward the walls° Recombination within the body of the plasma (volume

recombination) is neglected. Ionization occurs throughout the plasma

with a functional form dependent upon the type of discharge. Steady-

state conditions prevail throughout the plasma. The electrons are in

thermal equilibrium corresponding to a uniform temperature and have a

Boltzmann distribution of density for all cases except those with a

magnetic field.

In this chapter, the equations governing the behavior of steady-

state discharges are developed from a particular form of the Boltzmann

equation. This is followed by a detailed discussion of the assumptions

made in arriving at the final mathematical models.

Ao THE BOLTZMANN-VIASOV EQUATION

The equation which we are going to use to describe the various

components (electrons, ions, neutrals) of the plasma is commonly called

the Boltzmann equationo More precisely, it is a combination of the

-6-
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Boltzmann equation and the Vlasov equation since it includes both

21
uncorrelated space charge forces and short range binary collisions.

An excellent discussion of the derivation and limitations of both the

21
Vlasov and Boltzmann equations is given by Delcroix.

For our purposes, it is convenient to write the Boltzmann-Vlasov

equation in the following form

+
_rr_f(_,_,t) +_ " _w_f(_,_,t)= I_f(_,_,t))_-t c

where f(r,w,t) is the distribution function defined such that the

number density of a particular component is given by

(I)

co

n(_,t) f + += f(r,w, t) d_ ; (2)

-9O

w is the velocity, and a is the sum of the acceleration of the particles

due to external applied forces plus the acceleration due to uncorrelated

space charge forces.

The term on the right-hand side of Eq. (i) represents in a non-

explicit way changes in the distribution function which are due to all

short range collisional processes such as elastic collisions, ionizing

collisions,recombination, and charge exchange. Much more will be said

about this particular term in the next two sections of this work.

B. SOLUTION OF THE BOLTZ_NN-VIASOV EQUATION

There are two different commonly used methods of solving Eq. (i):

a perturbation technique, and the "moment method." The first named

method is normally used when the solution is known to be near a given

distribution function. Since we are concerned with relatively rarified

plasmas where the distribution function for the ions and in some cases

the electrons is not known and may be quite different from any standard

distribution function, the perturbation technique of solution cannot be

-7-



used and we must resort to the "moment method" of solution. Although

this method of solution is discussed in some detail by a number of

22-24
authors, the particular formulation which we need, including particle

generation, has not been developed fully heretofore. We therefore

discuss the "moment method" of solution in some detail.

In the most general "moment method" the Boltzmann equation is multi-

plied by a general function of velocity, position and time and then

integrated over all velocity space. If we let A(r,w,t) be the general

function of velocity, position, and time; multiply Eq. (i) by A ; and

then integrate over all velocity space, we obtain the result

_t_) (n(A))- n(_t) + _r n(_A)- n{_" qrA)- n(_. VwA) = /A_o (_-_/ d_ ,
C

(3)

where the symbol ( ) means the average over all the velocities is to

be taken.

The most useful equations for our purposes are obtained by letting

A(r,w,t) be increasingly higher integral powers of the velocity, w

When this approach is used we obtain what are commonly called the

transport equations or the macroscopic equations of motion. These

equations are useful in a practical way because, as we will see below,

they result in relationships between measurable, macroscopic quantities°

If we let A = i , Eq_ (3) becomes

_n
s-y+v- = G , (4)

the well-known equation of continuity with a generation term, G , on

the right-hand side defined such that

oo

where (_:f_t)g is the change in the distribution function due to

generation (ionizing collisions), and where v = (w) , the average

macroscopic velocity°
_



_ _ _ (We next let A = w and make the substitution w = v + u where

u is the random part of the velocity) to obtain

V • -* d_(n_) + n(_ • V_) + _ V • (n_) + na =
_-_ M c

(-_

where * is the kinetic stress tensor defined by

(6)

, = _tn <t,_> , (v)

¢

and M is the mass of the component (ion, neutra_ electron.) under

consideration. In Eq. (7) the term u u is the product of two vectors,

a tensor. Equation (6) is usually called the momentum transfer equatio n.

The next higher-order "moment equation," the heat transfer equation,

is obtained by setting A = (_ - _)(_ - 3) For this value of A(_)

Eq. (3) becomes

_ _ _ _ v_)v+v. ,+, .vv+ (, • T

e, e, _ ÷ _)T+v. Q-COc x_- (_c x

where

00

= (; -3)(;-31 _ dw
C

Q is the heat or energy flux tensor defined by

, (8)

Q = Mn(_ _ -_> , (9)

.¢

? " _ is the scalar product of two tensors, and (7 ' v_)T is' the

transposed tensor of this scalar product. A good explanation of this

notation is given by Delcroix. 23 In the derivation of the above

equation we have assumed that the only velocity dependent force is the

-9-



Lorentz force where

z (lO)COC = - M

Equations (4), (6), and (8) describe the macroscopic behavior of a

plasma with one set of the three equations for each component of the

plasma. Provided the collision, generation, and acceleration terms are

known, Eqso (4), (6), and (8) give three equations in the four unknowns,

, n , v , and Q Thus, in order to form a closed set of equations,

it is necessary to generate one more equation. This is done by assuming

that V • Q is either equal to zero or given as a known function or

that V . _ is given in Eq. (6) and then using Eqs. (4) and (6) to form

a closed set. In this work we usually assume that V • _ = 0 for the

ions. However_ we shall solve some one-dimensional problems more

accurately by assuming V Q = 0 . More will be said about these

assumptions in the next section.

C. ASSt%_TIONS DEFINING THE MODEL

In order to make the mathematics of the analysis tractable it is

necessary to make certain assumptions about the plasma of the discharges

which are to be analyzed. In this section each of the necessary

assumptions is discussed in detail and the limitations, if any, which a

particular assm_tion puts on the model are pointed out. Since we are

most interested in mercury discharges because of the possible application

to ion propulsion, some of the assumptions are evaluated in terms of the

low pressure mercury discharge.

io Steady-state conditions are assumed to prevail throughout the

plasma, thus we set _/_t = O for all variables. As we shall see, in

the relatively low-pressure discharges which we are considering, this

does not mean that the electron and ion temperatures are equal or that

the electrons and ions are in thermal equilibrium with each other.

2. Quasi-neutrality is assumed to exist throughout the discharge.

This means that we assume

no _ n = n , (ll)
1 e
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¢
where n. is the total ion density and n is the total electron

i e

density. Such an assumption is equivalent to neglecting the left-hand

side of Poisson's equation. The validity of this assumption can only be

rigorously checked after the solution of a particular problem; that is,

only after the term _ where _ is the potential can be evaluated

and compared to the difference

I_0 (ni - ne)l

It is well known that the assumption of quasi-neutrality breaks

down at the edge of the plasma where a sheath of a few debye lengths

_k es_ 25thi_ n _ is formed. The sheath region has been analyzed by Self 12

16
and by Caruso and Cavaliere. However, it will be seen in the next

chapter that even at edge of the plasma this assumption gives good

approximations to the ion current and most of the other parameters of

the discharge.

At this point we would like to emphasize that the general "moment

method" approach discussed in the preceding section is not dependent

upon the assumption of approximate charge neutrality. If one is willing

to use the complete Poisson equation,

_2_ = --% (n -
- cO i he)

as an added differential equation connecting the number densities and the

potential, then Eqs. (_), (6), and (8) apply for any amount of charge

separation.

3. For all of the cases solved in the following chapters, with the

exception of those with an applied magnetic field, the electrons are

assumed to be in thermal e_uilibrium corresponding to a uniform tem_erature_

T . The electron density is then given by the Boltzmann distribution
e

e_/kT e

n = neo e , (12)

where neo is the electron density at the center of the discharge,

- ll -



is the potential relative to the center of the discharge, k is the

Boltzmamnconstant_ and Te is the electron temperature.
Measurementsby Langmuir in 1925, 1927, and 1928 of the electron

velocity distribution in the positive column26-28 seemedto indicate

that the electrons had a Maxwellian distribution even though electron-
neutral and electron-electron collisions were too rare to establish such

a steady-state distribution. These unexplainable results are called
"Langmuir's Paradox.''29 Recently muchmore sophisticated measurements

by Vorobteva_ Kaganand their co-workers have confirmed that the electrons

in a t_ical low-pressure mercury discharge are indeed Maxwellian out
to at least 12 eV for pressures below approximately i0 microns.30'31

There is still somecontroversy concerning the mechanismwhich

provides the electrons for the high energy "tail" of the distribution.

The latest and most comprehensive discussion and study of this problem
was madeby Crawford and Self in 1964.32 Their explanation is that the

scattering of axially accelerated electrons is an adequate source of the

high energy tail and they refer to recent experimental work by Ott 33

in 1963 and Harp 34 in ]964, for verification of the condition that a dc

discharge can exist with an approximately Maxwellian electron distribution

without the existance of rf energy-scattering effects.

For discharges where an external magnetic field is applied, the

relation given by Eq. (12) can no longer be used and it is necessary to

use the _croscopic equations for the electrons as well as for the ions.

4o We assume the only short range elastic collisions of importance

are electron-neutral and ion-neutral collisions. Electron-ion, electron-

electron and ion-ion collisions are assumed to be so rare as to be negligible

in comparison to electron-neutral and ion-neutral collisions. For very

low pressure discharges (pressure below I_ in mercury) one can also

neglect the ion-neutral collisions° For this pressure the ion-neutral

collision frequency calculated using the experimental mobility values

of von Enge135 is less than one-fifth of the ionizing collision frequency

measured by Klarfeld 17 and thus to a reasonably good approximation can

be neglected. Most of the cases discussed below in Chapters II_ IIZ, and

IV are generalized to include ion-neutral collisions with calculated

- 12



results showing how the parameters of the discharge vary as the ion-

neutral collision frequency becomescomparable to the ionization frequency.

In order to take elastic collisions into account in the momentum

transfer equation one must be able to evaluate the collision term

For hard sphere type collisions with --1/r5 attractive forces, Allis 36

shows that the above expression is independent of the distribution

function and may be written for electron-neutral collisions as

#

f-co (Sf) _ d_ =-yen ne(_e-_n)_-t C
, (13)

where v is the ion-neutral collision frequency, V is the neutral
en n

gas average velocity and v is the average velocity of the electrons.
e

If the condition of 1/r 5 attractive forces is not met, Eq. (13) can

still be used for the electrons provided a suitable average value of

electron neutral collision frequency is used.24 Equation (13) is thus

a general expression which applies reasonably well to electron neutral

collisions.

For ion-neutral collisions the similar expression

oo

A(Sf) _d__-t C =-Vin ni(_i- _n)
(14)

may be used provided the mean free time between collisions is constant.

In the above equation v. is the ion-neutral collision frequency and
in

v. is the average ion velocity. When the background neutral gas density
i

is uniform Ven and Vin are taken to be constants. If the neutral

density is not constant, the collisions frequencies must be written as

v = n G
en n en

V. = n _inin n

- 13 -
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where n is the neutral gas density and Eqs. (15) and (16) define the
n

_'s The assumption of uniform neutral density is examined in more

detail in Appendix A where it is seen that reasonable (less than I0_)

variations in the neutral density have little effect on the parameters

of the one-dimensional collisionless planar discharge.

It is well to keep in mind that Eq. (14) is only approximate,

applying reasonably well to mercury discharges but only very approximately

to the noble gases. Each discharge must be examined on its own merits

to determine how close]y the condition of constant mean free time between

ion-neutral collisions is satisfied. Most of the measured data give

the collision probability, P , as a function of incident particle
c

energy, e_ , in electron volts° Since the mean free time is given by 37

(17)

for T to be constant at a given pressure as the incident particle

energy changes, the collision probability must be inversely proportional

to the square root of the energy.

5o We assume that ions are generated with zero velocity throughout

the entire volume of the discharge. With these assumptions, the ionization

part of the collision integral becomes

oo oo

•-oo g -co

= G A(O) , (18)

where G is the generation term equal to the number of ions generated

per second per unit volume. For the first three moment equations this

gives

A(O) = G , (19)

A(0) = = 0 (2O)

- 14 -
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J

and

GA(0) = G(_¢ - _r)(_ - _) = G v v , (21)

where A = i, w , and (_ -_)(_- _) , respectively.

The consequences of assuming the ions to be generated at zero

velocity rather than the more realistic gas temperature is discussed in

Appendix B. It is shown that for the ratio of neutral gas temperature

to electron temperature found in low-pressure discharges, the effects

of neglecting the initial ion velocity are negligible.

For each ion generated we also make the reasonable assumption that

an electron is generated at the background electron temperature with a

Maxwellian distribution of velocity.

It is convenient to write the generation function, G , as

G = VI neo g , (22)

where neo is the electron density at the center of the discharge,

is the ionization frequency, and g is normalized to have the value

unity at the center of the discharge. We write g as

v I

g = e7e¢/kT = , (23)

\neo/

where 7 = 0 , i , and 2 correspond to the three cases of generation:

everywhere uniform, proportional to electron density, and proportional

to electron density squared. The case of uniform generation (7 = O)

corresponds to ionization by an electron beam or a light beam, the case

of generation proportional to electron density squared (7 = 2) corresponds

to multiple ionization processes, and the case of generation proportional

to electron density (7 = I) corresponds to the most frequent case of
12

ionization by the electrons in the plasma. As discussed by Self, for

= 1 , VI is identifiable as the average ionizing collision frequency

per electron. In the other two cases V I has no simple physical

significance.
- l_ -



If the neutral density is not uniform then the generation term, G

is given by

where _I is defined by

G _I
= neon n g (24)

vI

n n

(25)

6. We assume that the acceleration term a is due to only the self

consistent Coulomb forc% q_/M plus in some cases an external Lorentz

force, × %)/H •

Do FINAL EQUATIONS

Using the above definitions and approximations, the transport

equations for the ions become

V I
_7 • (nivi) = neo g , (s6)

}*. e

n.v. o Vv. + vi(V - nivi) + - n. + v.
i 1 1 M M 1 1

x B) - V in n. v.i i

(27)

and

v i _ • . + . " ) =+_ x_.(Tri o v+v • + i i i c. i
i

÷

oo

x + GMv.v. + (_. - vi)(w i - vi) dwC. i i i
1 -oo C

(28)

where we have assumed that the velocity of the neutral gas is zero and

the neutral gas density is uniform. In Eq. (28) we have not evaluated

- i6 -



the collision term since we only use the first two n_ment equations when

we solve problems with collisions. It is very important to note also

+ -V_. inertial term since the average ionthat we have included the v i l

velocitF is not small compared to the random ion velocitM.

- 17 -



CHAPTERIII

ONE-DIMENSIONALCASES

In order to check the accuracy of the formulation given above, several

one-dimensional planar and cylindrical geometry problems have been solved

and results comparedwith values obtained by the more exact methods of
Langmuir and Self. I0'14 One-dimensional planar and cylindrical discharges

have been analyzed for the three different generation rates, corresponding

to y = O , i and 2 with collisions neglected. The particular one-

dimensional geometries analyzed below are shown in Fig. i.

Agreement with the more exact theory is shownto be quite good even

for the assumption of negligible kinetic pressure. A further indication

of the validity of this macros<opic pressure theory approach to dc dis-
38

charge problems has been furnished by Self' and Ewald. Using this

approach, they have obtained ex_e!lent agreement with the experimental

results of Klarfeld 17 for a one-dimensional cylindrical discharge.

Also included as a major portion of this chapter are the first knoT_

solutions to the one-dimensional coaxial discharge (Fig. ic) including

ion neutral collisions and a magnetic field. The coa_ial solutons are

of interest ior at least two reasons: First, the solutions represent

reasonable approximations to "long" coaxial discharges with an emitting

inner conductor, provided the electron density is such that the Maxwellian

electrons rather than the beam electrons provide a major portion of the

ionization; Second, and more importantly, the solutions can be applied

to probe theory to give answers to several important questions in this

area such as: What is the magnitude of the error in probe measurements

_en the probe is not negligible in size compared to the plasma; by what

magnitude does the ion density at the edge of the sheath of a small cylin-

drical probe differ from the undisturbed value, and what are the efiects

of a magnetic field and or collisions on the density of ions at the edge

of the probe sheath? All of the above questions are answered in this

chapter, using the coaxial solutions.

- 18 -
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FIG. 1--Geometries of the one-dimensional discharges.
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At the end o_ the chapter all of the solutions and equatLons des-

c_ibing the one-dimensional discharges are tabulated in a form useful for

computation purposes, so that cases other than those treated in this

chapter may be easily calculated.

A. CORRELATION WITH THE LANGMUIR'S THEORY

!. Neglecting Kinetic Pressure

Assuming V • _= 0 in Eq. (27), neglecting ion-neutral collisions,

and considering variations only in the x-direction, Eq. (26) and (27) for

the ions form the closed set of equations

i d

x[_ dx
(xJBnv) neo V I= g (29)

and

i d e de

(x_nv 2) - n--" , (30)

x_ dx M dx

_ere the distance from the center of the discharge is taken to be x ;

the subscript on the velocity has been dropped since in one dimension

v. = v = v ; and _ = 0 , _ = i , _ = 2 correspond to the planar
i e

cylindrical and spherical cases, respectively.

The above equations may be put in dimensionless form by the substi-

tution

s vII 1/2= (31)

V%]

and -e_

kT
e

v (32)

(33)
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Using Eqs. (31), (32) and (33(, together with the assumption of charge

neutrality [Eq.(ll)], Eqs. (29) and (30) become

1 d

sB ds
(s_e-Nvl) = g (34 )

and

i d e -N d_

(s_e-Nv_) = (35)
s_ ds 2 ds

(a) Planar Case

For _ = O (planar case) explicit analytic expressions for N and

v I as functions for s can be obtained by solving Eqs. (34) and (35).

With _ = 0 , Eq. (34) and (35) become

and

d
''_e-Nvl) = gT_

d _ 2 l_s(v) = (vI + _)

(36)

(37)

Integration of Eq. (37) yields the result

2 1 (38)vI = _ (eN- i) ,

where the initial conditions Vl(O ) = N(O) = 0 have been used. Substitution

of Eq. (38) into (36) then gives the relation

1 e-_ d_

(i - 2v21) = g (39)

4 v I ds

It can be seen that d_/ds -*_ at s = so , N = N0 , where

2 2 = 1/2 and hence Where [from Eq. (38)] NO 0.692 This thenv I = vlO , = .

is the edge of the plasma_ sometimes called the Tonks-Langmuir houndary_

for it is where s is a maximum (ds/d N = O) The condition that

vlO = i/_-2 at the boundary was determined by Bohm 39 to be a necessary

- 21 -



condition for the formation of a sheath and is called the BohmCriteria.

It is interesting to note that the BohmCriteria comesout as a natural i

result of solving the one-dimensional problems using this modified pressure

theory approach and that the BohmCriteria is satisfied independent of the
value one chooses for the generation rate_ g It can be seen from

Eq. (38) that the potential at the edge of the plasma is independent of

the generation function g _ just as it is in the Tonks-Langmuir theory.

When 7 = 0 _ the solutions of Eqs< (38) and (39) are

and

for 7 = i

and

for 7 = 2

and

,1 (40)
e_

Vl (41)
s - 2

2v I + i

s = - + _ tan -I

s = - v I + _-_ tan -I (W_l) ;

(42)

(43

s = [i - -- (eI]-I)] (44

3

2 2

s = Vl (1 - i Vl) (45)

The values of _ vs s are plotted in Figs. 2,3, and 4, where the

more exact values from Se!f 14 are also shown.

Of considerable interest is the value of ion current density at the

boundary. This current density can be calculated from the relation

J : (46)
i _ neo e Jo '
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FIG. 2--Normalized potential as a function of position in the planar

discharge (7 = O)
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FIG. 3--Normalized potential as a function of position in the

planar discharge (Y = i)
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FIG. 4--Normalized potential as a function of position in the

planar discharge (7 = 2)
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where

-_0

Jo = vlO e , (47)

is the average normalized ion velocity at the boundary (_0 ' So)vlO

and J. is the ion current density.
l

Another quantity of interest at the Tonks-Langmuir boundary is the

ion energy° In normalized form we write this energy as

2 (4s)U0 = vlO

In Table I the values of distance, sO ; potential, _0 ; ion

current, Jo and energy, U0 ; calculated using the above equations,

are compared with the more accurate results of Self. It will be seen that

for all three cases the value of sO at the edge of the plasma obtained

by this method is in excellent agreement with the calculations of Self,

as is %he current density at the edge. Fortunately, these are the macro-/

scopic parameters of the plasma which are usually measured in ion propulsion

devices and Langmuir probes. The potential and ion energy at the edge of

the plasma are not in such good agreement with the more exact theory.

(b) Cylindrical case

When we take _ = i (cylindrical geometry) in Eqs. (29) and (30),

only the case 7 = 0 can be solved explicitly. Again, the Bohm Criteria

is satisfied at the Tonks-Langmuir boundary for all three cases of ion

generation (y = 0 , i , and 2). The equations for all three cases are

given at the end of the chapter in Table IV. The results for y = 0 are

and

Sr - e2q/3 (49)

2v I

s -- 1)3/4 (50)r (4v 2 +
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For 7 = i and 2 , the Runge-Kutta method was used on an IBM 7090

digital computer to obtain values of _ and vI vs s The resultsr

for all three cases are plotted in Figs. 5, 6, and 7. Again, the exact

values are plotted for comparison. For these cylindrical cases, the values

of _0 ' So ' Jo and U0 are compared with the more exact values in

Table II. Although Self does not give the asymptotic values of the para-

meters for the case y = 2 , they are also included for completeness in

Table Iio

2o _ncluding Kinetic Pressure Term

A more exact result is obtained if the kinetic pressure term is not

neglected in the momentum transfer equation. We then make the assumption

that

V ._ = 0

or that the heat flow is negligible. The equation of heat transfer in one

dimension then becomes

d 2 SBVl
v (e -_ (u_)) + e -h (ul) d( ) 2 dVl 2-- + 2e-h (Ul) - gv I
i ds s_ ds ds

(51)

where we have used the normalization of Eqs. (31), (32), and (33) together

w_th the normalization

M

(u_) - (u2) (52)
2kT

e

The equation of continuity is unchanged. However, the momentum transfer

equation now has the added kinetic pressure term and becomes

l d 2 l d _ l an(s%-n vz) + (s%-n (u)) - (53)
s_ ds s6 ds 2 ds

%
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(a) Planar Case (8 = O)

For this case the momentum transfer equation becomes

_J

d2 2 ld-i(Vl+ ( >)- (Vl+ ( >)_ds - 2d_ds , (54)

with the solution

vl+ <u> -- _(e_- l) (55)

O

Using this result to eliminate (u_) from Eq. (51), and after some re-

arrangement, we obtain the equation

3 u1/2
• (e-_ U3/2) = -

dU 2 (4U+ i)
, (56)

(u2 )
where U = v_ Since Eq. (56) does not depend upon either s or

we again see that the value of potential at the edge of the plasma is

independent of the generation term g Integrating Eq. (56), we obtain

1
e -_ v31 = _ (vI - _ tan -I 2v I) (57)

Equation (57), together with the equation of continuity, can be solved to

give an explicit relationship between _ and s only for the case

7 = 0 The result is

e2_ s3 = _(s3 e_] - 51 tan-1 2sen (58)

For y = i and 7 = 2 , the Runge-Kutta method programmed for the

IBM 7090 digital computer was again used to obtain the solutions. The

results, which show excellent agreement with the more exact theory, are

plotted in Figs. 2, 3 and 4, and tablulated in Table I. It will be seen

that the values of Jo and sO agree very closely with the values obtained

by Self. The values of "wall" potential (_0) and ion energy (Uo)

also agree more closely with the exact values. The normalized wall
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potential is 0°786 comparedto the exact value of 0.854 and to the value

of 0.693 calculated neglecting kinetic pressure. The ion energy is 0.60

comparedto the exact value of 0.675 and to the value of 0.50 calculated

neglecting the kinetic pressure term.
The BohmCriteria that the normalized average velocity is given by

i/_2 at the boundary is no longer satisfied. The velocity is greater than

i/_2 , thus resulting in the more exact value of ion energy. It is inter-
esting to note, as we will see later, that the BohmCriteria is satisfied

for all the cases where we neglect the kinetic pressure term, including

those of a magnetic field and collisions, but is not satisfied for

cases with the kinetic pressure included.

(b) Cyllndrica! Case (_ = i)
For the one-dimensional cylindrical cases with kinetic pressure

included, it is necessary to use numerical methods on all three cases

(y = O, i, and 2) Again, including the kinetic pressure term improves

the accuracy ol the results. The potential vs distance for this higher
order approximation is also plotted in Figs. 5, 6, and 7. The values of

potential, distance, energy, and ion current density at the boundary are
given in Table II. The equations for the cylindrical discharge are tabu-

lated at the end o_ this chapter.

B. COAXIALSOLUTIONS

Lang_nuir tried to determine the solution for the one-dimensional

collisionless coaxial discharge in 1929 using the exact integral formu-
i0

lation. However, he was unable to solve the integral equation due to
4o

convergence problems in the assumed series solution. Later Self, using

the same general approach, found that the series solution assumed by

Langmuir was not uniformly convergent. Fortunately, the macroscopic

approach used in this work leads to meaningful differential equations with

convergent solutions. As mentioned at the beginning of this chapter, not

only is the coaxial discharge of interest because o£ its possible appli-

catlon to coaxial type discharges but it also has direct application to

the analysis of cylindrical probes.
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Below, we find solutions for the coaxial discharge under several

conditions. First, neglecting the kinetic pressure term, we solve the

collisionless, "free-fall" case and then proceed to solve the more complex

cases including oollisions and a magnetic field. We then solve the collision-

less coaxial discharge including the kinetic pressure term.

Finally, we relate the coaxial solutions to probe theory and discuss

the usefulness of the results in probe theory calculations.

i. N_lectin 6 Kinetic Pressure

(a) "Free-fall case.

The normalized equations governing this discharge follow immediately

from Eq. (29) and Eq. (30) since the operators in cylindrical and coaxial

geometry are the same. Thus, for the ions we have

and

where

i

S
r

e-Ng= i, ,or

i d

---- (Sre-N vI) = g (59)
s ds
r

d i
(s 2 (60)

r v I) = -- e _ ,
ds 2 ds

r r

e -2N depending on the type of generation. We

are again assuming that

ne = n.l = neo e -_] (61)

For the case y = 0

to give

, g = i Eq. (59) can be integrated immediately

2
S

Sr e-l] Vl = ___jr + C (62)
2

For coaxial geometry we suppose that at some distance, s = s
r m

say the normalized potential, B , goes through a minimum with

3_

(sm)
r

Vl(S m)

= 0

= 0
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and

(Sm) = 0

Physically, what this means is that we are assuming a sheath forms

at both the inner and outer "walls" of the coaxial system, that a potential

maximum occurs between the inner and other "walls_" and that the ions thus

fall in the self consistent electric field toward the walls, lons created

at a position of s greater than s fall to the outer wall and ionsm

created at a position of s less than sm fall to the inner wall.

In order to satisfy the initial conditions, we see that the constant

in Eqo (62 must be equal to -s_/2 , thus

Is s v1
= _n 2 r (63)

- S
r

This is about as far as we can go with the solution without using

numerical methods. For computation purposes we rearrange the equations

in the following forms:

2

_2 0 _Vll- ds - s 2Vl e(l-7)_
r r

(64)

and

Iv2- _I dvl -vll ds _o_ Iv2 + _Ie(l-7)_l

r

(65)

The results of solving Eqs. (64) and (65) for various values of inner

to outer radii are shown in Figs. 8 through ii. Both the normalized ion

density and potential are plotted as a function of position in the discharge

region. Only the most important case of generation proportional to

electron density is plotted since we will find more accurage solutions for

the other cases (7 = 0,2) in part 2. However, the other cases may be

iound from the equations g_ven in Table 1-_. The ion current at the

boundary can be found from a knowledge of either the density or the po-

tential since the normalized velocity is always equal to I/_2 at the
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boundary and the potential and density are related by

n/neO = e-_

For the normalized current _mthus obtain

Jo = n/neo Vl = 0"707e-_

Wenote that the potentials (and therefore the densities) at the

inner and outer walls are approaching the limiting case of a planar dis=

charge as the ratio of inner to outer radii approaches unity. For the

case of outer to inner radii ratio equal to 1.55 we see that the two

curves of Fig. lO and Fig. ll which apply to this case are nearly sym_
metrical, with potentials at the wall of 0.660 for the inner "wall" and

0.715 for the outer wall. Both of these values are near the limiting

value for a planar discharge of 0.693 and we would expect that any dis-

charge with a ratio of inner to outer radii of less than approximately

1.5:l could be reasonably represented by a planar discharge. It is

also of interest to comparethe normalized _ll distance in the case of

a planar discharge and the one discussed above. From Table I, for a

planar discharge with 7 = 1 , the normalized wall distance is 0.354

while for the CaSeof b/a = 1.55 the wall distances are 0.36 and 0.44 for

the outer and inner walls, respectively.
As the radius of the inner conductor becomessmaller and smaller we

would expect the potential and density in the discharge to approach that

of a cylindrical discharge except for points very near the center. For
a cylindrical discharge the potential at the wall for this case is (from

Table II) _ = 0.840 and the normalized wall distance is 0.784. Looking
at Fig. ll for the case of a ratio of outer to inner radii of 18.5:1 we

see that the potential at the wall is 0.850 while the wall distance is

0.830. Both of these values differ from the cylindrical case by less

than 10%. All the curves of Figs. 8 through ll thus are useful in es-

timating the error one would obtain in assuming the limiting cases.
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(b) Including collisions and a longitudinal magnetic field

Whena magnetic field is applied transverse to the direction of
motion of the ions and electrons as shownin Fig. 12, the electrons no

longer have the Boltzmann distribution of density given by Eq. (12).

This is because the application of a small magnetic field causes the elec-

trons to cycloid such that the collision and magnetic field terms in
Eq. (27) begin to dominate the equation and the approximation to Eq. (20)

kT _n e
e

- --V_

m n m

is no longer valid. We must therefore use macroscopic equations of motion

for the electrons as well as the ions.

Assuming a uniform magnetic field, B z , in the z-direction, the

equations of continuity and momentum transfer for the electrons are,

respectively,

V (ne_e) = G (66)

and
e kT

(< "We ) -_ (_ -. Bz ) -_ e(ne + G v = - -- n + v × - V n v - --Vne e e en e e e
m m

(67)

where v s the electron-neutral collision frequency, k is Boltz-
en

mann's constant, and T is the electron temperature. In the above
e

equations we have assumed that the electron temperature is constant

throughout the discharge. We know that the average electron velocity is

small compared to the random velocity and we thus neglect second order

terms in the average velocity in Eq. (67). Writing Eq. (67) in component

form for the radial direction, we have

kT _U e _¢ e

v (_I nY-I + V ) + e e _+ B , (68)
er e en - -- -- Ve@ z

m _r m _r m
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f

FIG. 12--One-dimensional coaxial discharge with an

applied magnetic field.
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where v and are the electron velocity in the
er re@

n no
tions, respectively, and U = 2n e / eO

e

In the @ direction we find that

r and @ dire c-

I nT-i + Ven) = _ eVe@(V e m (Ver Bz) (69)

Using Eq. (69) in Eq. (68) to eliminate Ve@ and using the standard

normalizations of Eqs. (31), (32), and (33) we obtain the result

2 ]V _ i _U I I _N
v y-l) + en ce - -- R - - -- R ,

el -Y- + !(vl Ven)v v ny-l+ 2 m_s 2 m _s
e r r

(7o)

where

Since _ assume that n. _ n
l e

U I =- in(n/neo ) (71)

R = -M (71)
m m

everywhere in the discharge and since

V • (neVe) = V • (ni_i) = G ,

the radial velocity components of the ions and the electrons must also

be equal so that

V -- V. ---- V
er ir r

We therefore drop the subscripts e and i on both the velocity and

density terms.

Only the case of small magnetic fields, i.e., magnetic fields for

which the ion cyclotron radii are much greater than the radius of the

discharge, will be considered. For this low magnetic field case, the

normalized equations for the ions are uneffected by the magnetic field
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and thus are given by

v I

_v I

?s
r

+ v I
y-i + = _--

27s
r

(72)

and

_v I _U 1 nT-i
_ v I =

_s _s
r r

(73)

Only the most interesting case of ion generation directly proportional to

electron density will be treated in detail. However, Eq. (66), (70),

(72), and (73) form a closed set of equations in the unknowns N , v I ,

n , and U I _hich can be easily solved by standard numerical methods

for any Value of 7

For 7 = i , we thus want to solve the following _hree equations:

v I -- + vI i +
_s 2_s

r

(74)

and

v I _ U I

_ vI
_s _s

r r

= i

)• en +__I e Vl = __ Rm _

\ VenV ] 2 VSr _Sr

(75)

, (76)

where we have used the condition that

I
v >> v
en

for all cases of 9_terest.

It is now convenient to define two parameters, A and B , to be

2 2
V + CO

A - en ce (77)
I

en
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and

in

B = i + T (78)

In order to be able to use the Runge-Kutta procedure of solving a

system of nonlinear equations_ it is necessary to have Eqs. (74), (75),

and (76) in the form

dF
i

- f(F I, F 2, ... F n) (79)
ds

dF

ds = fn(Fi' F2' "'" Fn) (80)

The final equations which are solved are thus

ds 2 s
r r

(81)

and

dU I

ds
F

- +B+ Vl+-- 2_

s r

(82)

= a (83)(1+ s)vI + 1 -
ds s

r r

Figures 13 and 14 show the normalized density as a function of radial

position in the dis}harge for various values of inner to outer radii and

for two different values of the parameter B , which is a measure of the

ratio of' ion-neutral to ionization frequencies.

Plotted in Figs. 15 and 16 are the densities and potentials at the

inner and outer "walls" of the coaxial discharge as a function of inner

to outer radii_ b/a _ for three different values of collision frequency.
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As expected, for a given b/a , a higher collision frequency results in

a lower value of density. This is due to the fact that the rate of ion

loss to the walls is reduced when ion-neutral collisions are occurring.

The effect of a magnetic field and a magnetic field plus collisions

are shwon in Figs. 17, 18, and 19. Notice that the magnetic field has

much the same effect on the "wall" ion density as ion neutral collisions.

More will be said about these results in the discussion of probe

theory which follows the next section.

2. I_cludin_ Kinetic Pressure Term

When we include the kinetic pressure term, _ _ _ in the equations

of the collisionless coaxial discharge more accurate solutions are obtained.

These more accurate equations follow immediately from Eqs. (34), (51),

and (53) for the cylindrical discharge. Again for purposes of computation_

we put Eqs. (34), (51), and (53) in the form of Eq. (79) and obtain

dv

1
w

ds
r

_i 2 (i-_) i -_ (84)

and

ds
r

C )eIl - + 3 Ul/V I + vI 2S
r

(85)

_S

r

3u -
_ + + , 2 2

Ul __ + v 3 - (i-7) _-_ 3Ul)"

_r _Vl Vl e 1 2

(86)

The above equations were solved by again using the Runge-Kutta pro-

cedure starting the solutions off with a Taylor series expansion of each

of the above equations about the point s = sm Figure 20, 21, and 22
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show how the "wall" parameters vary as the ratio of outer to inner

diameter is changed for the cases 7 = 0 _ i _ and 2

It is comforting to note that in all cases the values of the

"wall" parameters approach the previously calculated values for the

planar discharge and the cylindrical discharge as b/a _ i and

b/a _ _ _ respectively.

3. The Coaxial Discharse and Probe Theory

As the ratio of outer to inner radii (b/_) of the coaxial

discharge becomes large, the discharge begins to approximate a "small"

cylindrical probe in an 'linfinite" plasma. The solutions thus become

applicable to the problems connected with probe theory. Several inter-

esting and useful results of applying the solutions for a large b/a

to pDobe theory are discussed below.

One immediate quantitative result which can be obtained is the

effect of the probe size on a discharge or_ what is the same thing_

the distance away from the edge of the discharge a probe must be in

order not to effect the probe measurements. The parameter of interest

at the sheath boundary is the ion density. From Figs. 2% 21_ and 22_

we see that in this collisionless case, the potential is asymptoting to

a normalized value of 0.575 for all three generation rates corresponding

to 7 = 0 _ i _ and 2 We obtain the same asymptotic value for the

potential (and thus, the density) independent of the generation since

there is very little generation between sm and the probe_ i.e._ in the

sheath region. This gives a normalized ion density at the sheath of

n. = 0.562 Again from Figs. 20-22 we see that for less than a i0_
1

error in this value of ion density the value of b/a must be greater

than approximately 8:1. This means that the radius of the sheath sur-

rounding the probe 3 which may be larger than the probe_ should be at

least 8 sheath radii away from the edge of the plasma in order to

keep the error in ion density to less than i0_.

- 58



The ion current to a cylindrical probe may be written as

I = n e v A
p s s s

, (87)

where I is the current to the probe, n is the ion density at the
p s

sheath_ v s is the ion velocity at the sheath_ and A s is the area of

the sheath. Using the value of v determined by the Bohm Criteria
s

and a value of ion density determined by obtaining the potential at the
4l

T-L Boundry, Bohm, Burhop_ and Massey found an expression which gives

ion collection in terms of undisturbed ion density, nO Their

result is

Ip = .40 nO e_/ .-?._ As
• M

(88)

Provided that the area of the probe is approximately equal to the area

of the sheathj the above expression can be used to calculate the ion

density when the electron temperature is known.

Using the theory developed in this work it is possible to not only

verify the work of Bohm_ Burhop and Massey (B.B.M) but to extend it also

to the cases of a plasma with collisions and in a magnetic field. In the

collisionless cases of Figs. 20-22 the value of density at the sheath

appears to be asymptoting to a value of ns 0._62 The normalized

ion velocity at the sheath for all three values of generation (7 = 0_132)

is given very closely by v = 0.720 Substituting values into Eq. (87)
S

we obtain the result

j
e (89)Ip = .404. n Oe As

which is very close indeed to the value obtained by B.B.M. In the limit

of probe radius to electron Debye length becoming very larg% Allen# Boyd_

and Reynolds 42 also obtain essentially the same result.
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It is interesting to compare the result of Eq. (89) obtained by

using three moment equations and including kinetic pressure to the

result obtained by only using the first two-moment equations and

neglecting kinetic pressure. From Fig. 17 we see that for 7 = i the

value of ion density at the sheath is given by

n _ 0.580
s

for large b/a The normalized ion velocity at the sheath is again

the same value as given by the Bohm criteria, namely

v = 0.707
s

Equation (87) thus becomes for this case

= • _/ --_ e , (90)Ip 0 4]0 nO A sV M

which again is very close to the value obtained by B.B.M. We would thus

expect the theory used in this work to give reasonably accurate results

when extended to the cases of collisions and a magnetic field even when

the pressure term is neglected.

With the assumptions that the sheath is small compared to the mean

free path for collision and also small compared to the cycloidal radius

of ions, a similar expression to Eq. (90) can be obtained for various

collision rates and/or a magnetic field. The results should give

reasonably good accuracy for the ion density in the plasma provided

that the sheath thickness is small compared to the probe radius. If

the sheath thickness is not small compared to the probe radius, the

results given below are still useful as long as the Child-Langmuir Law

can be used to find the area A of the sheath.
s
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In order to make the presentation of the results more compact, we

rewrite Eq. (87) in the following form:

ns no _ A e , (91)Ip ._ s

where the value of n is found for various collision rates and
s

magnetic fields from the calculated curves of Fig. 23.

It is interesting to note that ion-neutral collisions have the

same qualitative effect on the undisturbed ion density as a magnetic

field, both causing a increase in the undisturbed ion density because

both tend to inhibit diffusion of ions across the plasma. From Fig. 23

we see that a relative ion-neutral collision frequency of ten results

in an actual undisturbed ion density 10% higher than that calculated

neglecting collisions. When both collisions and a magnetic field are

present, the error in undisturbed ion density calculated with the

theory of B.B.M is even greater. A relatively small magnetic field

can give a large value of the parameter A/R m We see that neglecting

collisions with A/R m = 20 the error in undisturbed ion density would

be greater than 20% if one used the theory of B.B.M.

As far as is known, the curves of Fig. 23 give the first useful

quantitative corrections to the probe theory in the ion collection

regime.

C. SUMMARY OF ONE-D]_4ENSIONAL EQUATIONS AND SOLUTIONS

Tabulated below in a form useful for computer solution using the

Runge-Kutta technique are the equations describing the one-dimensional

low and medium pressure discharges. Also included are the first terms

in the Taylor series expansion of each of the parameters. This is

necessary in order to start out the Runge-Kutta method of solution. In

using these formulae it is well to keep in mind the following principal
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assumptions which have been used in the derivations:

(i) Charge neutrality is assumed throughout, that is_

n° _ n
1 e

n.÷n
i e

<<i

(2) In the cases without magnetic field 3 the electrons are assumed

to have a M-B distribution such that

e/
kT

ne neo e

(3) In the cases with a magnetic field, the magnetic field is

assumed to be so small as to have a negligible effect on

the ions.

(4) The electron temperature is assumed to be uniform throughout

the discharge.

Using the formulae of Tables Ill and IV_ any case which is not

calculated in the body of Chapter III can be easily solved.

The normalizations used are sumnarized below:

(i) Planar cases

kT

U I = in(n/neo )
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TABLE III

NCRMA_ EQUATIONS C_ THE C_E-DIMENSIGNAL PIANA_ DISCHARG_

Neglecting kinetic press_e Including kinetic pressure

Collisionless ("freefall" case 5 With collisions Collislonless ("freefall" case 5

_ : 0y_ = 0

If2

v 1

s =

l+2v I

Z = 1

.... 1 ÷ _ tan'l (_2Vl)

_. = 2

12[i (e_-l)]s : -

22

s - vz (z- _ vz)

7 = 0

½5

2

as (v z - ½)

V 1 = S + o..

n = (2+ c) s2 + ...

C = Vin/V I

.... + 1 )tan'l(_--_v I)

B

- _ - L/2
!_)L1

V 1 =

Vin
B = l+--

v I

dv 1

ds

-- 1s3 : 3 e_2q[se_ . -- tan.l(2se_)]

4 2

F
: _ [_v_-_t_-_(_l)

7 - i and 2

,ivI (2"21÷½5_(I-_5.
i

a_ 3(_/vz-vz)e (i"7)n

--_ -_2 3 -

a_.eC___)_[3u_/_÷_CUl_/v_+v_-v_/2

(4-{-

v I = s + ...

12 2

n = 5-s +.--

v I = s + .,.

(z + B) s2

Vin
B = i+ --

V I

=land2

"_ 1 2

%- ys +...

e
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TABLE IV

NORMALIZED EQUATIONS OF THE C_E-DI_ICRAL C_LINDRICAL AND COAXIAL DISCHARGES

Neglecting Kinetic Pressure (u-_ . 0) Including K1netlc Pressure

Col]_slon]ess, wlthout Wlth collisloms Wlth colllsionssnd a Colllslc_less, without
_netlc field mm_netlc field m_netic field

2v 1

(j___)i/_

7=l_and Z

vl_ _v_ . _e(1-_)_]

dSr 2 1

(vI - _)

v i

a___o . _vI J_-7)_

Coaxial

v I - sr - sm + . .

- z(a r - sin)2 + . .

_llndrical

sr
v, 2--÷ . . .

2

n "_ s2+ • • 'r

7 -0, i, ind_

d_ = {(1+ _)Jl-_)_-_ll%+2c',_]

ds r (1 - _v_)

. 2
dn 212v I e(l'7)q + Ov I Vl/S r]

as r (1 - _,_)

Coaxial

vI - sr - sm + . . .

, - (2 + c)(s - sm)2 + . .

_[llndr Ic8/

vI - sr + . . .

.c_+_ 4 ....

v4.

c "_2-

7 " Ol I_ and 2

dvI Vl(D + B) + 2T r - dv I [_ I ( _ _]

d.r (_-½_ o_ _- _-_

I

. ___+_3Ti+ ,(z-_)
__ ,--=

dU z -(i + B + D)v I - :i (_-)+

do. C4-½1 !d_ "1

1/ -1

coaxlM.

Vl " Sr - sm + " " " 1 Vl " _r-- sm + ' " l

. (i + B)(s r - Sm )2 + --J _ - _ (sr- sm) 2 + - • -

. - 1 Sm)2 +

Coaxial

Cylindrical

vI - s_2

= l(l+ B)S2r

UI= (_+D+ B)S2r

U1 . in (nl.eo)

D - rive n M

Cylindrical

sr
vI = --

2

-_ 1 2
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and

2 M (u2)
ul = 2k--Y

S

(2) Cylindrical and coaxial cases

v I =
v
r

kT

U 1 =- in(n/ne0 )

2 M 2

Ul = 2k--_ u

s
r

One final practical note of interest in the actual solving of the

equations. It is more accurate to make a change of independent variable

from the normalized distance parameter_ s _ to the velocity v I

This is because the derivatives are much better behaved at the Tonks-

Langmuir boundary with v I as the independent variable and thus the

computer solution is more accurate. Fortunately_ with the equations

_n the form given in Tables III and IV this change of variables is

easily accomplished.
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CHAPTER IV

TW0-DIMENSIONAL CASES - EXACT SOLUTIONS

Solutions for the discharges in a finite length cylinder_ between

finite length coaxial cylinders and in a rectangular box 3 have been

obtained for the most important case of ion generation proportional to

electron density with the pressure term neglected° The particular

geometries studied are shown in Fig. 24. The effect of ion-neutral

collisions is included so that the results apply in both the low and

medium pressure regimes. It can reasonably be expected that these

solutions will have the same order of accuracy as the corresponding

one-dimensional cases discussed in Chapter III. As far as is known_

these results represent the first solutions of this type of problem

in more than one dimension. Two-dimensional solutions for the cylindrical

geometry case of Fig. 24 have also been obtained for the more restricted

case of equal radial and longitudinal electron and ion currents through-

out the discharge (ambipolar diffusion). A tabulation of solutions and

equations is given at the end of the chapter in a form useful for further

computation if desired.

The more general cases without a magnetic field are considered first.

A. WITHOUT A MAGNETIC FIELD

Neglecting the term V • _ in Eq. (27) and using the condition of

a Maxwellian distribution of electrons with equal electron and ion number

densities we obtain for the equation of continuity (with % = i )

÷ e ÷ vI (92)
e

where we have used the Boltzmann distribution of density [Eq. (12)] to

eliminate the ion density and for the momentum transfer equation

+ + vi ÷ e (93)v • vv÷ ( + Vin) v = -
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FIG. 24--Two-dimensional discharge geometries.
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6.

->

where we have brought the collision term nV. v over to the left-hand
in

side of the equation and divided through by the number density_ n

Expanding the v • _7 v term in Eq. (93) we obtain the result

- V V

+ (vz+v.)C = o (94)
in

Now we assume the condition that the curl of velocity or the vorticity

is zero throughout the discharge so that the velocity can be expressed

in the form

t

where W

dynamics.

v = _TW

is a scalar function related to the action function in electro-

Using this assumption we can write Eq. (94 ) as

e vl (95)
V +_+ ( + Vin ) = 0 ,

which is certainly consistent with the assumption of zero vorticity°

As the development proceeds in the following paragraphs, we will also

see that the assumption of zero vorticity leads to consistent values of

the parameters within and on the boundaries of the plasma for this

special case of ion generation proportional to electron density (T = i)

q

i. Rectansular Box

(a) Derivation of Equations

In the rectangular box geometry of Fig. 243 Eqs. (92 ) and (94)

become, after expanding Eq. (94) into component form and using the

@-
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normalizations,

and

Sl = vl (2-_-Ji/2

s2 = VI (2-k--J1/2

V
X

f M_1/2
v2 = k2--_; Vy

X

Y

(96)

(97)

(98)

(99)

(I00)

_i _v2 6n _n

--+-- vI -- - v2 -- = 1

_sI _s2 _sI _s2

, (i01)

_Vl (vI+ vi_ ) z _nVl -- + I Vl =

_s I V 2 _s I

, (io2)

_v2 ( vI÷v" ) i _B
v2 __ + in v2 = (103)

_s 2 vI 2 _s2

We now look for a solution for W of Eq. (95) by assuming that it is

separable in the additive form

W : Wl(Sl) + W2(s2) , (_o4)
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so that v I is only a function of sI and v 2 is only a function of

s2 Now_ using Eqs. (102) and (103) in Eq. (101) to eliminate

8_/_s I and _/_s 2 we obtain the result

_Vl 2 ( V. ) _V2 2 ( Vin)
(i - 2v 2) 2v I i +mn + (i _ 2v22) __ 2v2 i + = i

7
(lO5)

The first two terms on the left-hand side are only a function of sI

while the last two terms are only a function of s2 That is, we have

Fl(Sl) + F2(s2) : 1 (a constant) (106)

For this to be true for all values of s1

Eq. (105) must be separable in the form

and s2 , it follows that

2 i 8Vl 2 / Vin h 51

- _+v I _l+ ] -- --- (lO7)(Vl 3) asI _ 2

and

where 51 + 5 2 = I

_q_tions (1o7)ana (io8)canbe integrateato obtain

a function of Sl(S 2) The results are

[I2_ f(l. >tan-ivl]
h\_lJ

vl(v2) as

(109)
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and

I lJ2II(2 Ij22]Bs 2 = - v 2 + i + tan -I _2 v (ii0)

where we have defined the parameter_ B _ as

in (iii)B = i+- i-
v

From Eqs. (107) and (108) we again see that the Bohm Criteria at

the "wall" comes out as a natural result of the equations_ that is_

8vl/3s I _ _ when v I = i/_ This is a further indication of the

consistency of the formulation.

Using Eqs. (102) and (i03) in Eq. (i01) the potential can be found

as a function of velocity. The results are

_. = - i + _n v. + i
2

(112)

and

_2 = - i ÷ v 2 + i
2

(i13)

This in turn can be substituted in Eqs. (109) and (ii0) to find the

potential as a function of distance. The results are

1/2

BSl ='(_iI/2 ((i_i B)gl )+ (B Ii/2(\2B e - - i \2-_i] i + _an_i_ -i

)l

a

1/2
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and

2 i/2

Bs 2 =- e - 1 +

m

i 2

e

where potential at any point

+-- tan -1

B

1/2-

(sI _ s2) is given by

(i15)

_(Sl,S2) -- ,h(Sl)+ _2(s2}

For the two-dimensional cases, the ion current at the boundary is

still given by Eqs. (46) and (47), but now the current Ji and velocity

v are vectors. For the rectangular geometry cases the velocity at any

point is given by

÷ _ _v
v = mVl + 2

and the density by

n = neo e

-(hi÷ n2)

(b) Discussion of Calculated Results (Finite Length Rectangular Box)

Using the above formulae all of the parameters of the discharge in

a finite length rectangular box can be calculated. As far as is known

the results presented below are the first two-dimensional solutions ever

obtained for dischar6es in the low and medium pressure re6imes. The use-

fulness of this modified pressure theory approach is inmediately apparent

when contrasted with the usual integral equations obtained by Langmuir

and which_ for two-dimensional casesj appear to be extremely difficult

even to formulate.
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Several interesting and useful calculated results are as follows.

In Figs. 25 and 26 equipotentiais for rectangular boxes with two dif-

ferent geometries are plotted as a function of the normalized distance

p_rameter_ s The Tonk's Langmuir (hereafter T-L) boundaries are

the outermost straight lines and define the edges of the discharge. It

should be noted that only the upper right-hand portion of the box need

be presented since the rest of the solution can be obtained by a re-

flection in the sI and s2 axes. The results appear to be reasonable

in that the equipotentials cross the axes at an angle of 90 ° and near

the boundaries the equipotentiais begin to approximate the shape of

the boundary°

Normalized ion current density to the "wall 'tof the square box is

plotted in Fig. 27 as a function of distance from the axis. Even though

the solution does not apply in the sheath region_ we have seen that the

current calculated at the T-L boundary in the one-dimensional cases is

a good approximation to the actual ion current. We would expect the same

degree of approximation to hold in the two-dimensional cases.

It is reasonable to expect the ion current density at the T-L boundary

to be a good approximation to the actual ion current at the wall since the

generation in the sheath region is usually negligibly small. Also showm

in Fig. 27 is the angle of the current with respect to the sI axis. The

case plotted is for no coilisions_ and we see that the current falls off

by about 30_ from the center to the edge of the discharge. Again this is

a reasonable result since the ion density decreases more rapidly than the

total vector velocity increases.

Of more interest than the total vector current is the current normal

to the surface at the T-L boundary. Shown in Figs. 28 and 29 is this

normalized ion c_rrent to the "wall _' as a function of distance from the

axis of a square box for three different values of ion neutral collision

frequency. Figure 28 shows the normalized current

n°

i

J2 = -- v2

neo
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Notice that as the collision frequency is increased from the no collision

case to Vin/Vl = 5 the current density decreases almost by a factor of

two. This is because the ion density necessary to maintain the discharge

is less_ and this in turn is due to the fact that the ions and ionizing

electrons remain in the discharge longer. The effect of collisions on

the current density is showu in a different way in Fig. 29 . In this

figur% the current density is normalized to have the value unity on the

sI axis. From this figure we see that the ion current density with

collisions falls off more rapidly as the collisions frequency increases.

The result goes over to the collision dominated or diffusion case as the

collision frequency term

_. V
in

begins to dominate the equation of motion and the inertial term

v- _v

becomes less and less important. However_ it is important to note that

the nonlinear inertial term is essential even when there are many col-

lisions present for it cannot be neglected in the determination of the

boundary conditions at the walls.

Shown in Fig. 30 is the effect of collisions on the "wall" parameters

of the discharge in a rectangular box. Normalized potential and wall

distance are plotted as a function of increasing ion-neutral collision

frequency. Notice that as the relative collision frequency increases

the normalized wall distance decreases. For a square box of a given

size this means that the ionizing frequency_ necessary to maintain the

discharge_decreases as the relative collision frequency increases since

from Eq. (96)

VI = _'/_ slO

x 0
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box as a function of the relative ion-neutral collision

frequency.
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The normalized potential at the "wall" increases with relative ion-

neutral collision frequency, thus resulting in a lower density since

. n. = e-T]

neo

Using the results of Figs. 31 and 32 we are able to determine two more

interesting results. First, we are able_ with the aid of Fig. 31_ to

answer the question of how long a rectangular discharge must be in order

to appear "infinite"_ or in other words, in order that the parameters at

the center of the discharge are the same as for an infinitely long

(s20/Sl0 _ _) box. We see from Fig. 31 that less than i0_ error in

either normalized wall distance or normalized potential is encountered

if the length of the discharge is greater than approximately 5.6 times

the height. We will see later that even a shorter (length to radius)

cylinder appears essentially infinite. Using Fig. 32 we can obtain some

idea of the current to be expected at the end of a long rectangular dis-

charge. From Fig. 32 we see that the normalized potential, _2 _ at the

end of a long discharge does not appear to be reaching an asymptotic

value. This result is further confirmed if we let 52 approach infinity

in Eq° (113). For v2 finite we obtain from Eq. (113)

N20 = lim

52 _ 0

or

h20 _ _

This means that for a "long" discharge, the density approaches zero and

the current out of theend of the discharge must also approach zero.

However, we note from Fig. 31 that the ratio of s20/Sio must be very

large indeed (greater than 16:1) in order for the density to be less

than approximately i/i0 of its value at the discharge center.
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2. Finite Lensth Cylinder

(a) Derivation of equations

In cylindrical coordinates_ neglecting the variation of any parameters

in the theta or azimithal direction we obtain for Eqs. (92) and (95) in

component form

$vI vI 8_ _

_+ -- _ vI -- _ v2 _ =

_sr sr _sr _s z

i , (i16)

and

v I -- + Bv I =
_s 2 _s

r r

, (i_7)

v 2 -- + Bv 2 =
_s 2 _s

Z Z

, (llS)

where we have used the normalizations

sr = VI r

fMhl/2
Sz = $ k2-_/ z

V
r

v2 = V-_YI Vz
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Using the same method of separation of variables as for the rectangular

case we obtain for the two-dimensional finite length cylinder, the separated

equations:

2 i _Vl Vl 2

- + Bv I(Vl 5) _s 2s
r r

r

2
(i19)

and

h
2 1 _v2 2

_ _ ÷ Bv 2 -(v2 g) _s
Z

Z

2
(120)

where

+_ : i (12z)(Zz r

For this cylindrical case the Bohm Criteria is again satisfied at

the boundary since

-- _ - (122)
_z

when

1

vI = _ (z23)

Equation (120) has the same form of solution as the rectangular case, namely
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and

- 1 +

Z

O_ ) tan- I
+ ..__z

B e 2 - i)

B)n2

- (m2_)

For the separated solution in the r direction it is again necessary

to use the Runge-Kutta procedure and a computer.

In a form useful for computation purposes the separated equations in

the r-direction are

vI
r v21B

8v I 2s 2
-- (126)

_S r 2 1
(v1 - _)

_s
r

2

V_s- (_r+B) vl
r

2 i
(vI - [)

(127)

We again note that at the T-L boundary the normalized velocity goes to

the value given by the Bohm Criteria independent of the collision freq-

uency or the size or shape of cylindrical discharge. The expansions near

the origin necessary to "start" the solution by the Runge-Kutta method

together with the normalized equations are summarized at the end of

this chapter.

I
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(b) Discussion of calculated results

Shown in Fig. 33 are the calculated equipotentials in a finite

length cylinder with a length to radius ratio of 1.57. The general

shape of these equipotentials is much like those of the rectangular

box_ and all of the general comments made in connection with the

rectangular discharge apply to the discharge in a finite length

cylinder.

One specific difference between the two discharges can be noted

when we compare Figs. 34 and 31 which show the parameters of the dis-

charges as the length becomes large. It was noted for the rectangular

discharge that as long as the length to height ratio was greater than

5.6:1 the error in assuming an infinite discharge was less than i0_.

From Fig° 34 we see that for the cylindrical discharge the length to

radius ratio need only be 2.3:1 in order that the "wall" parameters at

the center of the discharge differ by less than i0_ from the values

obtained for an infinitely long discharge.

3. Finite Length; Concentric Coaxial Cylinders

(a) Derivation of equations

The solutions for the discharge parameters between two concentric

coaxial cylinders are generated from the same equations as for the

cylindrical cases with only a change in the point of zero potential

gradient° That is; we choose some value of normalized distance s = s

as the initial value point where we put

_91 (Sm) = 0
_s

r

m

vI (Sm) = 0

_i (sm) = 0
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8

and solve for values of normalized potential and velocity for s greater

than s and s less than s We again find the velocities at both
m m

the inner and outer "walls" are given by the Bohm Criteria.

(b) Discussion of calculated results

The equipotentials for a very small inner conductor are shown in

Fig. 35. In this figure the ratio of outer to inner radii is 30:1. In

comparing this discharge with nearly the same shape cylindrical discharge

of Fig. 33 we see that even a very small center conductor has considerable

effect on the shape of the equipotentials at a radial distance of lO_ of

the outer radius even though the center conductor is only approximately

3.3% of the outer radius.

From the shape of the equipotentials of Fig. 35 one would expect

the axial current density to reach a maximum value at approximately 20_

of the outer radius of the discharge (at the point of minimum potential

since n/he0 = e -_ and the axial velocity is constant at the wall). That

this is true is shown in Fig. 36 where the normalized axial current at the

end of the discharge is plotted as a function of radial distance from the

center of the discharge. The case considered is for no collisions and with

a value of s = 0.2 .
m

The equipotentials in a discharge with a relatively much larger

center conductor are shown in Fig. 37. In this discharg% the ratio of

outer to inner conductors (b/a) is equal to 4.48. As b/a goes to unity

we would expect this type of discharge to approach the discharge in a

rectangular box. Even for the b/a value of Fig. 37 we already see that

the equipotentials are becoming somewhat symmetrical.

Normalized axial current density as a function radial distance from

the center of the two different discharges of Figs. 35 and 37 is compared

in Fig. 38. It is interesting to note that a greater variation in current

density is obtained for the discharge with the smallest center conductor.
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B. THE EFFECT OF A MAGNETIC FIELD IN THE PRESENCE OF COLLISIONS

i. Derivation of Equations

The effect of a longitudinal magnetic field can also be included in

the two-dimensional cases provided we make the same assumptions as in the

one-dimensional magnetic field cases. It is also necessary to make one

further assumption in the two-dimensional cases discussed below. We

assume an insulated-wall container so we know that the conditions

n v = n.v. (128)
e ez 1 lZ

and

n v : n.v. (129)
e er i lr

are satisfied at the wall. It is also assumed that Eq. (128) and (129)

are satisfied throughout the discharge. This is the common ambipolar

diffusion assumption.

Only the case of a finite length cylinder will be carried out in

detail since it is the most important case and since the other cases of

a rectangular box and finite length coaxial cylinder follow immediately

from the cylindrical case.

It is again necessary to solve for the motion of the electrons as

well as the ions since the assumption of a M-B electron distribution is

no longer valid. For the electrons the equations are

and

Vh

÷ ÷ e VI ( )V • v + v • -- = 130
e e

n
e

kT Vn
e e

m n
e

e

+ (VI + Ven) Se = -- (_ " v X _) . (131)
m



>> vI
Using the fact that Yen , normalizing 3 and expanding the above

equations in component form we obtain for Eq. (130)

8v I v ! 8v2 v i8U v28U
---_ +--+ --+--_--+ _ = 1

8sr s _s 8s _sr z r r

(i32)

and for Eq. (131), the equations

i M 8U VenVl i M 8_ coceV2
+ - + (133)

2 m _sr VI 2 m _s r vl

and

VenV 2 = . _Oce BzV 1

+ Ven/VI- v2 -
2 m 8s

Z 2 m 8s z

(134)

where we have taken the magnetic field, B
z

with

, to be in the z-direction

e
co = --B
ce m z

U = _n (n/neo)

and

n = n. = n
e 1
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Using Eq. (!34) in Eq. (133) to eliminate v 2 , we obtain

_U1 72m(v2 en+ _2ce_I] __I + e _I_ V l m
r _Sr

(_36)

Equations (132), (135) and (136) constitute the equations for the electrons.

For the ions_ again assuming the magnetic field effect to be negligibl%

the normalized equations are

--+Vl_V1 ('VI + V.in)vl _ 1 _
_s VI 2 _s r

r

(137)

Thus, we have four equations (132), (135), (136), (137) in the four

unknowns U I ; v I j v 2 , and I] The procedure of separation of

variables is again used with

U = Ul(Sr) + U2(Sz) (138)

v I = f(Sr) only (139)

v 2 = f(Sz) only (140)

= nl(sr)+ n2(s) (141)

Using Eq. (138) through (139) and rearranging the Eqs. (132), (13_),

(136) and (137) into the form necessary for a computer solution we

obtain the separated equations

__ vlvl 2l) 2 Vln
_Sr 2-s--/_kr t - _ - 1 1 +- 7+ vlv R

en m
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and

_i

_s
r

_U I

_s
r

I (142)

m V +_

i + i + vin + - vi ce
M en )]v 2

Vl - i -

i
z)

(143)

I(= 1 +

_s
z

Vin)  ]/217 v2 - (v2 - _) (144)

and finally

_)q2

;s
Z

in i

_2v2 - v 2 i + _ v - 5)
(_4_)

= in 1

bs 2v2 ÷ v2 i + 7 v - _)
z

(146)

These equations_ because of their more limited and specific nature_ are

not included in the summary at the end of this chapter. The Taylor

series expansions near the origin are given below for the cylindrical

case:

V I = -- S + ...
2 r
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and

_l = -- + s + ...
2 r

U I = - -- +A + s
2 r

v2 = _2 sz + _"'

2

N2 = _2 B sz "_ -oo

2

U2 - a__ B s + g @

z

where

and

B

A

%2.

in
= 1 +

I
V

%2.

in

vI

M
R = --
m m

2
tD
ce

vlv R
en m

2. Discussion of Calculated Results

Of most interest because of the possible application to the study

of ion thrustors is the axial current at the end of the coaxial dis-

charge and the effect of magnetic field on this current. Shown in

Fig. 39_ for the collisionless case of a cylinder with a length to

radius ratio of 2:1_ is the normalized axial ion current as a function

of distance from the z-axis for increasing values of magnetic field.
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FIG. 39--Axia! ion current as a function of radial position for a two-

dimensional discharge with an applied axial magnetic field.
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The parameter A is directly proportional to magnetic field for

this collisionless case. The curves of Fig. 39 show that as the magnetic
field is increased the axial current density becomesmore and more non-

uniform. Onemight be led to the conclusion that in order to have more

uniform current density the magnetic field should be zero. However_
this would be an erroneous conclusion since for a given size of dis-

charge the magnetic field increases the percentage of ionization and
thus the overall ion current in the axial direction and the overall

efficiency of the device.

The primary effect of the magnetic field is to cause the electrons

to cycloid manytimes as they move from where they are generated to the

edge of the discharge. The electrons are thus more likely to have an

ionizing collision before they reach the wall. Since the axial magnetic

field has no effect on the axial motion of either ions or electrons, for

a given choice of geometry parameter_ _ the separated solution inz
the z direction is unaffected. However, the magnetic field has a

large effect on the parameters of the discharge in the r direction,
as shownin Fig. 40. Here the normalized length to radius ratio is

plotted as a function of magnetic field. Wenote that as the magnetic

field is increased for a given choice of geometry parameters _ andr
_z _ the solution applied to a longer and longer discharge. Physically_
what is happening is that the collision frequency in the radial direction

necessary to maintain the discharge is decreasing as the magnetic field

increases. This is a perfectly reasonable physical result in view of the

longer time spent by each electron in moving to the "wall."

Weshould point out that we do not intend to cover all possible

shapes and magnetic field situations. Rather we have shownthat by

presenting somesolutions selected to illustrate specific points the

results obtained by this general method are physically reasonable. In

order to facilitate the calculation of other cases_ the equations are
presented in all cases in a form useful for computation purposes. In

order to use the equations to calculated various geometries_ Fig. 41 has

been prepared. This figure gives the value of _ (and thus _ ) tor z
use for various geometries and magnetic fields.
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FIG. 40--Effect of magnetic field on the length to radius

ratio of the two-dimensional cylindrical discharge.
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FIG. 41--Shape parameter of the two-dimensional cylindrical discharge as a

function of the length to radius ratio for various values of magnetic
field.
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C. SUMMARYOFTWO-DIMENSIONALEQUATIONSANDSOLUTIONS

Tabulated below are the equations which describe the discharges in

a rectangular box3 a finite length cylinder_ and a finite length dis-

charge between concentric coaxial cylinders. The sameapproximations
summarized in Part C of Chapter III also apply to the two-dimensional

discharges_ and these should be kept in mind when applying the equations

to a particular discharge. Oneadditional restriction is that the gen-

eration rate for all two-dimensional cases is taken as proportional to
electron density (T = i) .

The normalizations used are summarizedbelow.

(I) Rectangular geometry:

vI

v2 = V

Y

= _I + _2

eel
I]1 -

kT

e¢2
1"12 -

kT

n = neoe = neo

Sl =
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and

s2 = _2-_J vIy

(2) Cylindrical and Coaxial Geometry:

Vl = _2---_J Vr

= _i + _2

eel
I]1 -

kT

e¢2
_2 -

kT

:,1 -(%_+'_2)
n = neo e = neo e

s
r

s
z

- 106 -



t_

i. Rectangular Box

The equations of the rectangular box with collisions are:

Bs I c [<2lJ21= _ v I + + tan -I

\_i / _ v

Bs 2
" v2 +(_)i/2 Ii + O_)tan_l Ii_I/2 v21

and

Bs I
+

Bs 2 I2B/ \ e - \_2/ ll + _) tan'l

where

V.

in
B = l+--

I
v

and

GI + _2 = i

- 1/_
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2. Finite Length Cylinder and Concentric Coaxial Cylinders

a. Axial direction

The equations in the z direction are the same for both the

cylindrical and coaxial equations and are given by

and

Bs

z

2 1/2

C°zl ( ) CBs =- -- e -i + i +
z 2B

m

1/2

b. Radial direction

In the radial direction the equations must again be solved by

computer. In a form useful for solution the equations are:

_v I

;s
r

Vl _r 2

v I B
2s 2

2 i
(_l " [)

and

_s
r

2

vI

-- - (_r + B) v I
S

r

2 i

(vI - Z)

where _r + Gz = i and depend on the shape of the discharge.
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In order to solve the above equations using the Runge-Kutta method

it is necessary to expand the solutions in a Taylor series near the

initial point. For the finite length cylinder the expansions are

r
V_ = -- S
±

2 r

and

Or( )rI]_ = -- + B s + ...
2

For convenience of calculation_ the value of _ for various geometries
r

has been plotted in Fig. 42.

Using this figure and given a particular length to radius ratio_

can be found and thus _ from
r z

= i -_
Z r

For the coaxial cases; the expansions near the point s = s are
m

vI = Gr(Sr - Sm) + ...

and

2
NI : _r (_r + B) (sr - Sm) + ...

where the value of

the discharge.

s determines the ratio of outer to inner radii of
m
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FIG. 42--Shape parameter of the two-dimensional cylindrical discharge

as a function of the length to radius ratio of the cylinder
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CHAPTERV

NUMERICALMETHODSFORGENERALBOUNDARYCONDITIONSANDVARIABLEGENE_&TION

Although the two-dimensional coaxial and cylindrical cases are

certainly the most useful and important because manyof the devices of
interest tend to conform to these geometries, it would be of considerable

interest to be able to solve two-dimensional problems for more general

boundary and generation conditions. Oneapplication of these more general

results would be in a study of discharge shapes for optimizing longitudinal

ion current. Another use for a more general analysis would be in studying

the effect of a varying generation rate throughout a particular discharge.

Thus, in recognition of the value of such a generalization of the problem
considerable work was done on trying to formulate finite-difference

numerical methods of solving the equations of one- and two-dimensional

discharges.

A great deal of difficulty was encountered in trying to solve the

general two-dimensional discharge as a boundary value problem. Although
somereasonable results were obtained for the one-dimensional cases,

only very limited success in solving the general two-dimensional problem
was achieved.

It is shownin Appendix C that the separation of variables which
allows an exact solution for the case of generation proportional to

electron density with zero vorticity cannot be extended to include any

other generation condition. Becauseof the generation term and the

curl of the velocity not being zero, the more standard and straight-

forward fluid type approaches such as a transformation to the hodographic
plane cannot be used.43 It therefore appears that a numerical procedure

must be used to obtain more general results.

In this chapter the difficulties associated with a general numerical

procedure of solution are first outlined, followed by a discussion of two

procedures which were successfully used to solve the one-dimensional
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problem as a general boundary value problem. Finally, one of the

numerical methodswhich was successful in one dimension is applied to the

two-dimensional problem where it is possible to use this technique to

solve only a limited two-dimensional problem because of difficulties with

the convergence of the solution.

A. DIFFICULTIESOFTHEPROBLEM

All of the cases which have been previously studied in Chapters
III and IV have been solved as initial value problems. In order to

solve for the discharge configurations with more general boundaries,

the equations of the discharge must be solved as boundary value problems.

This immediately creates a difficult problem at the outer plasma boundary

in that both the derivatives of potential and velocity with respect to

distance go to infinity. This means that when numerical procedures are

used a computer solution can never give the correct answer at the plasma

boundary as long as the distance variable is taken as the independent

variable. It also means that obtaining convergence to any solution near

the boundary or "wall" of the plasma can be expected to be difficult.

Another difficulty which manifests itself when the plasma problem

is set up as a boundary value problem is the appearance in the equations

of an unknown distance parameter. In the initial value problem this

distance parameter is easily normalized out without restricting the

solution° As we will see in the next section, in order to eliminate this

distance parameter in the boundary value problem we must restrict the

solution to cases for which the generation is not proportional to electron

density (7 _ i) This is a rather severe restriction.

As in many two dimensional problems which one wishes to solve by

finite difference procedures there is a problem with obtaining enough

computer storage. In the IBM 7090 computer the fast access core contains

somewhat less than 32 thousand words of storage. As we will see below,

the most straightforward procedure for solving two-dimensional problems

cannot be used because of limitations in computer storage.
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Onefinal general problem associated with nonlinear partial dif-

ferential equations of this type is the difficulty, and in most cases

the impossibility, of finding the region of convergence for any particular
finite difference scheme.

B. ONE-DIMENSIONALNUMERICALAPPROACHES

All of the numerical methodswere initially developed and checked

in one dimension since solutions were available for one-dimensional cases

by which convergence to the correct solution could be verified.

Twodifferent numerical approaches were used to solve the one-

dimensional problem.

i. Newton-Raphson Method

The first method used was a reasonably straightforward application

of the Newton-Raphson method. 44 This method of solving simultaneous

nonlinear equations is applied as follows: If we call the N equations

in the N unknowns which we wish to solve the F. equations we then
J

have a set of equations of the form

Fl@l ' ¢2' _3 ' "•"'¢_) = 0

FZ(¢I'_2' _3' •'•' ¢_) : 0

where the unknowns are the Cj's . Each of the above equations is

expanded in a Taylor series about some initial guessed value of the _j's

keeping only the lowest order terms in the expansion• The above equations
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thus become

= - FIO

N / _F\

e

m

= _ F20

- FNO

where the subscript "0" denotes an initial "guessed" value.

These simultaneous (now linear) equations are then solved for the _j's
i

which are in turn used to improve the initially guessed _jO s which are

's etc until a final convergent solution isused to find new _ j , .,

obtained• First, in order to set up the one-dimensional problem for

solution by the N-R method, a new normalization was introduced defining

a new distance variable z such that

z : sisw , (147)

where s is the normalized distance to the wall. In this new
w

normalization, the one-dimensional equations are (in rectangular co-

ordinates)

and

dv dd_zz e(l-7)Bd--_- v - = 0 (i48)

S - 3 - e + (4v 3
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where s is treated as another unknown. Next, the region of solution
w

between z = O and z = 1 is divided into a finite numberof intervals

or meshpoints. Equations (148) and (149) are then written in finite

difference form at each node of the mesh, being careful to use central

differences for the first-derivative terms. These finite difference

equations plus the boundary conditions

(o) : o
_z

v (o) : o

and

(1) = Dzmax

written also in finite difference from constitute the closed set of

equations which were solved by the N-R method, DZma x being the value

of the derivative of potential at the outer boundary. Strictly speaking,

DZ should be taken to be infinity at the boundary. However, for
max

computation purposes it was found that a value of DZma x of four would

give reasonably good answers for the potential and that higher values

did not improve the accuracy at the "wall."

Convergent solutions and reasonably good accuracy were obtained for

most of the parameters of the one-dimensional discharge for all three

generation rates corresponding to 7 = 0 _ 1 , and 2 The results are

shown in Fig. 43. The values of potential plotted in Fig. 43 agree

fairly closely with the exact solutions of the same equations from

Chapter III which are also plotted on the figure. The computer calculated

values of the normalized distance to the wall_ s , are not in good
w

agreement with the exact solutions due to the problem of accuracy of

solution near the plasma boundary where the computer cannot simulate

the rapid change of the variables _ and v •
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FIG. 43--Normalized potential as a function of position calculated by the

numerical Newton-Raphson method compared to the exact solutions

oi the equatinns.
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Although the N-R methodworks quite well on the one-dimensional

problem it is not easy to apply to the two-dimensional cases due to the
limited amount of computer storage available. For a two-dimensional

problem divided into only a 10 by lO grid or lO0 meshpoints the storage
needed would exceed the IBM7090 core by a factor of three. At each mesh

point there would be three unknownsor for a lO × lO mesha total of

300 unknowns. This would meanthat storage would have to be provided for

a 300 by 300 coefficient matrix of the 300 linearized finite difference

equations. However, within a few years such a problem will not be out
of the capability of new computer systems such as the IBM System360
which will have "unlimited" fast access storage.

Thus, the straightforward N-R method should be kept in mind as a

suitable technique for solving these problems in the near future.

2. Time Relaxation Method

The other one-dimensional approach which leads to a convergent

45
solution is the time relaxation method proposed by Lax. In this

approach the derivatives with respect to time are kept in the equations

and the equations are iterated in time until a steady state is reached.

The derivatives with respect to time are written in the following way

(in one dimension)

t
n 2

At

, (l O)

where n is the mesh point index and ft+_t is the value of the
n

dependent variable of interest at time t + At . It is very important

that the value of f be written as the average of its two nearest
n

neighbors, otherwise this approach does not converge. In general the

method proceeds in time in the following manner: an initial value of

ft is guessed_ ft+At is then solved for in terms of ft , then the

new value of ft+_t is used to find ft+22_t and so on until convergence

to a steady-state solution is obtained.
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In order to program the one-dimensional plasma equations for this

method of solution, they are put in the normalized form

= VI e(l-7)_ _z _vbt - v + _ (151)

and

8v 8v VI e(I-7)_ 1 _
8t - -vy_- v +_ (152)

where V I is now an unknown parameter which must be eliminated since no

consistent way of finding vl(t+At) is available. In order to normalize

out the parameter vI we define a new potential such that

(1-7)%
V I = e

and

u = _0+_ .

Equations (151) and (152) can then be written as

_U = e(l-7)u _u _v
y_ -v_+_ (153)

and

_V _V e(l-T)u 1 _u
y_ = -vy_-v +_ (154)

These equations are written in finite difference form, ready for

programming on the computer, as

[ t)t t]t+Z_t --t (l-7)ut -t n+l _ Un- Vn+l - Vn-i
= u +Z_t e - v +

Un n \ 2Az 2Z_z

(155)

- 118 -



o

and

fvt _vt h t _ t
t+At -t -t n+l n-i --t (l-7)u t i Un+ I Un_ I

j-ve +-= v - At v n n '
Vn n \ 2 2_z

where

(156)

t t

-t Un+ i + Un- i
u = (157)
n

2

and

t t

7t = Vn+l + Vn-i • (158)
n

2

The boundary conditions used to obtain a convergent solution are

(o) = o

v (o) : o

and

v(1) = v
max

where v is chosen to be slightly less than the known value of I/_2
max

Although the convergence rate is slower than the N-R method,

excellent agreement between the exact calculations and the computer

calculations are obtained. The results for the case 7 = 0 are shown

in Fig. 44. For the one-dimensional problem, the maximum value of

_t/Ax for convergence can be found explicitly by the method of
46

characteristics. This analysis which is carried out in Appendix D

allows us to approach the solution as fast as possible.
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FIG. 44--Normalized potential as a function of position in the one-

dimensional planar discharge calculated numerically using the

time relaxation method.
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Unfortunately, in normalizing out the parameter vI , we have

automatically excluded the important case of generation proportional to

electron density (T = 1). In order that V I be finite in Eq. (153)

we see that qO would have to approach infinity for the case 7 = 1

and of course this is not compatible with a computer solution.

Even though the method is somewhat restricted, it was decided that

a preliminary investigation of the use of this procedure to solve two-

dimensional problems would be undertaken.

C. TWO-DIMENSIONAL TIME REIAXATION APPROACH

For the two-dimensional problems we begin with the equations for

the ions

_} 1 _e(l-7)u
(159)

and

8_ (1-Ju _
_7 = - e +_ • v-v "Vn (160)

where these equations have been derived by the "moment method" of

Chapter II keeping in all variations with respect to time in a consistent

manner. In the above equations T is a normalized time parameter; we

have normalized the equations and eliminated the parameter V I by the

same technique as used for the one-dimensional case. In component form

the above equations become (in rectangular geometry)

8v I 1 8u

_T 2 _S I

8v I 8v I -

Vl-- - v2 -- - v I e

_d I _s 2

(l-%)u
(161)

_v 2 i _u

_T 2 _s 2

8v 2 8v 2

v2 v I -- _ v2

_s 2 _s I

e(1-7)u (162)
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and

8u 8v2 8vI

_T _s2 _sI

_LL _U --

V 2 -- _ V I -- _ ekl-TJuf_

8s 2 _s I

, (163)

%

o

where v I and v 2 are respectively the normalized x and y velocities,

sI and s2 are the nor_lized x and y distances, and u is the

nor_lized potential.

It is easily shown by eliminating _u/_s I

(161) that at the "wall" (where _vJ_s I _)

must be satisfied. Similarly the condition

i

v2(s201-

must be satisfied at the "wall." Thus, again we see that the Bohm

Criteria comes naturally out of the solution of the two-dimensional

problem.

Using exactly the same finite difference procedure as discussed

for the one-dimensional case, Eqs. (161), (162), and (163)were programmed

for solution on an IBM 70_ computer.

Some difficulty was experienced in obtaining the correct bo_dary

conditions for solution of the two-dimensional case at the outer boundaries

where sI = slO and s2 = s20 The conditions

s2 i0

between Eq. (163) and

the condition Vl(Slo ) = i/_2

and

= 0
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plus the conditions

and

Vl (slO) = Vl max

v2 (s20) = v2 max

do not completely define the boundary. It was necessary to assume two

further conditions which cannot rigorously be proved true for a general

boundary. The conditions assumed were

82 u

(s20) --0
i

and

82 u

2 Slo)
= 0

Convergence to a solution was obtained. However, the solution was severely

limited in that convergence could only be obtained for values of Vl max

and v 2 relatively far away from the boundary _(vI max andmax v2 max

were limited to values of 0.45 rather than the known "wall" value of

0.707). Because of this limitation and the previously discussed

normalization limiting the solutions to cases other than 7 = 1 , work

on this approach was not continued.

From the considerable amount of time and effort needed to obtain

only limited and certainly not satisfactory solutions to the general

two-dimensional problem, we conclude that the difficulties of solving

the equations as a boundary value problem have not been overcome and

that considerably more work would certainly be necessary in order to

obtain useful general solutions. Perhaps even a completely different

approach would be necessary in order to overcome the problems discussed

above.
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CHAPTER VI

EXPERIMENTAL CORRELATION WITH THE THEORY

The theoretical development and procedures discussed above have

been used to calculate the behavior of two different low pressure dis-

charges: the so-called oscillating-electron plasma source built by

Van Hoven 2 at the Electronic Research Laboratory of Stanford University

and the Kaufman ion source tested by workers at the California Institute
8

of Technology. An attempt is made to approximate the oscillating-

electron plasma source by a two-dimensional cylindrical discharge.

However, only gross qualitative agreement is obtained due to the inability

of the theoretical model to take into account the beam or primary electrons

from the cathode. Much better agreement between theory and experiment is

obtained in the Kaufman ion source where the plasma is treated as three

components: ions, Maxwellian electrons, and beam electrons.

A. THE OSCILLATING-ELECTRON PLASMA SOURCE

This low-pressure discharge is shown schematically in Fig. 45 and

operates in the following way: Electrons from the indirectly heated

cathode are drawn towards the anode, striking neutral mercury atoms and

ionizing them to initiate the discharge. It is possible to apply a longi-

tudinal magnetic field to the discharge which is shielded from the region,

R , to the left where the plasma streams out through small circular holes

in the magnetic shield. The whole device is enclosed in a glass container

capable of being continuously pumped and the pressure regulated by means

of a pressure sensor and servo-mechanism.

The region enclosed by the magnetic shield was analyzed as a two-

dimensional cylindrical discharge. Measurements of the current density

were made in region R , as near as possible to the "wall" of the interior

region, with a planar Langmuir probe which was capable of being moved from

the axis on a radius out to the edge of the discharge. Measurements of
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currents were made at two different values of magnetic field. _fort_uatcly,

it was only possible to take a rather limited amount of data since the time

available for testing was minimal. The measured results are shown in Fig. 46

where the current density normalized to the value at the center of the dis-

charge is shown as a function of distance from the center of the discharge

for no magnetic field, for a magnetic field of 20 gauss, and a magnetic

field of 32 gauss. Higher values of magnetic field caused the discharge to

assume another mode of operation where the current density differed widely

from the ones measured in Fig. 46.

In attempting to approximate the behavior of this device, we chose the

finite-length cylindrical discharge as being most nearly like the interior

region of the experimental model. The results of calculating the ion cur-

rent density for this particular shape are shown in Fig. 47. The experi-

mental and calculated results do not agree well at all except that the

density for both cases seems to fall off to about the right order of magni-

tude. A very reasonable explanation of the discrepancy in results is that

the primary electrons from the cathode (which are not taken into account

in the theoretical model) are causing a larger density of ions on and near

the z-axis than the theoretical model could possibly predict. These

primary electrons from the cathode have much larger energies than the

Maxwellian or plasma electrons and thus near the axis dominate the dis-

charge. Thus, the results show that any theoretical model must include the

primary electrons for low pressure discharges of this nature. In the next

section we take into account the beam electrons for a Kaufman type ion

source and obtain much better agreement between theory and experiment.

B. ONE DIMENSIONAL MODEL OF THE KAUFMAN-TYPE ION THRUSTOR

Shown in Fig. 48 is a schematic diagram of the Kaufman engine or ion

thrustor. In its simplest terms the operation of this device can be

explained as follows: a mercury gas enters from the left as shown by the

arrows where it is then ionized principally by a beam of electrons which

is drawn off the cathode. The ions are then accelerated through the

openings on the right by a negative potential, mixed with electrons to

neutralize the beam, thus providing thrust.
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axis for three different values of magnetic field.
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Although we will confine our discussion to the Kaufman type io_i

thrustor the analysis should be applicable to other experimental studies

of coaxial type discharges.

i. Mathematical Formulation

In order to be able to analyze this very complicated device, we

choose to make the following idealizations:

(i) We assume infinite geometry in the longitudinal or axial

direction.

(2) Neutral density variation is neglected.

The usual low pressure operation allows us to make the further

approximation that the ion-neutral collisions may be neglected.

Of course, the general formulation is not dependent upon this

assumption and the method should be applicable to discharges of higher

pressure, as the one discussed by Golant and co-workers 47 where the

Maxwellian electrons do most of the ionizing. The geometry is the same

as that of the simplified model shown in Fig. 12.

As we have seen, in order to be able to adequately describe a low

pressure discharge with primary electrons we must take into account two

different species or kinds of electrons: the beam or primary electrons

which come from the cathode with a rather high energy, and the thermal

or Maxwellian electrons. There is good experimental evidence to support

this seemingly arbitrary division of the electrons. Strickfaden and

Geiler 8 in their measurements of the Kaufman type ion thrustor found

that the Langmuir probe characteristics could be approximately explained

by a Maxwellian distribution of electrons with a superimposed, randomly

directed but monoenergetic group of electrons at approximately 20-30 eV.

Langmuir and Jones 48 in 1928 identified three different main groups of

electrons; primary electrons_ secondary electrons formed by an ionizing

collision of a molecule with a primary electron, and a background of

Maxwellian or ultimate electrons. More recent experimental work by

Chaghtai 49 and Leckey, Higginson, and Emeleus 50 has confirmed the

existence of the two main groups of electrons, an almost monoenergetic

group which has fallen through the cathode sheath and acquired random

direction with little change in energy and another group of slower near-

Maxwellian electrons.
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Using Eq. (167) in Eq. (166) to eliminate Vb@ and normalizing the
above equations we obtain for the final one-dimensional beamelectron

equation

1H% 1 d% 1Hd_
..... + Ai Vbl = -

2 m Em nb ds 2 m dsr r

(169)

and

dVbl %1 %1 _% I
--+ --+ - _ --

ds s nb ds pr r r

(170)

where

i
E - kT
m 2 e

w and

A1

2
co i
ce Vbn

I i I) P VbIVb (Vbn - p Vb

and Vbl is the normalized radial beam velocity,

normalization

r

and we have used the

(171)

with

Srr = -_

Vb

(172)
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(a) BeamElectrons

As the beamelectrons moveto the outer wall and suffer ionizing

collisions we would expect them to be Maxwellianized and their density

to decrease. Wetake this into account by assuming that after a given

number of ionizing collisions, p , the beamelectrons are "instantaneously" "

Maxwellianized. Wethus neglect the secondary or transistional group of
electrons.

The first two momentequations for the beamelectrons are

i I
V • (%%) = - [ vb % (164)

I
where nb is the primary or beamelectron density, vb is the beamelectron

ionization frequency, vb is the average beamvelocity, and p is the aver-
age numberof ionizing collisions necessary to Maxwellianize a beam electron;
and

Eb Vnb + 1 vI) e (_ _ Vb × _z)+ Vb(Vbn - p - m
m nb

(165)

where _ is the equivalent beamenergy (1/2 m _) , Vbn is the beam-
neutral collision frequency, and B is the magnetic field; uniform and in

Z

the z or longitudinal direction.

In component form the above equations may be written as

i I

(Vbn - p Vb) Vbr + e< rz)_ + Vb@B

m nb_r m

(166)

e_ ! V ) Vb@ = - _ VbrB z(Vbn p
(167)

and

_Vbr Vbr Vbr _nb I I

--+ _+ _ Vb

8r r nb 8r P

(168)
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Wewrite Eq. (169) as

i
- %Rm --
2

d%l

ds
r

+ AI Vbl
(173)

where

Eb

E
m

M
R -
m m

and

%1 = _n %/%0

(b) Maxwellian Electrons

Again using the condition that the beam ionizing frequency is much

greater than the ionizing frequency due to Maxwellian electrons we obtain

for the Maxwellian electrons the two normalized equations

dVml Vml 8Uml Ii + Pl nb--+--+ Vml = --
s _s p n

dSr r r m

(174)

and

i dUml i dB
- R -- + v BI = - - R --

m m m
2 ds 2 ds

r r

(l_)

@
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where

BI

2
6O
ce

Vb m_
+

I_) nb-nmVbl]

mn

+ --i---+

Vb nm

(c) Ions

Using the fact that the magnetic field has a negligible effect on

the ions we obtain for the ions the two normalized equations

+ vii + _
ds v I ] 2 dsr r

(176)

and

dVil vii dUil nb
--+ --+ v_
ds s ds n.

r r r 1

(177)

2. Final Equations for Computation

Using Eqs. (169), (170), (174) -- (177) above plus the neutrality

condition

n. = n + n
1 m e

and the condition of equal electron and ion currents

.v. = nv +nbv b ,nl 1 m m (178)
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we can eliminate the unknowns n and v and combine the above
m m

equations to give the following forms which are useful for computation

purpose s :

8v i [_ v i i R

n

8s s_(l-Rn) 2 (I-R n)
r

$[C(Rn+l) BI
iL < (-_-Rn)+ Rm(1-Rn) R (I-Rn) i_

m

(179)

_ - V°

Sr i I-R n

2 1 n

+

2 2v.3 BI
V.

1 1

%(I-Rn) Rm(I-Rn)
+

SRn(B1-A1)/RE vi2vb]/
Rm(i- Rn)

(18o)

: i D(C + Rn) +

BI Dv 2.

Rm (I-R n) Sr

R (BI-AI)/R E
n

Rm(I-Rn)

V

2 (I-R n)

(181)

[ AI%
L(l-Rn)%Rm

V i (Rn+C)
+

%(i-%)

V. 1 n

l +

% S(I-R n) Rm%(I-R n) Rm% l-R n

I 1 1Dv2i 2 (l-Rn)

(182)
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and

8v b

_s
r

2
vbv i

S
r

l]
(I-R n)

2
Dr.

1

P

2
vb 1 vb A1

+ • +

2Sr(l-R n ) 2P (I-R n ) (l-Rn) _R m

VbV i (Rn+C)

Rm_ (I-R n )

+

2VbVi BIRn 2
I + + Dv. - --------

RERm j 1 2 '(i-Rn)

(_83)

where

R

D = 1 + n (184)

_(I-R n)

Vbn

+ (185)C = Rn I

vb

In order to solve the above five equations in the five unknowns,

v i , v b , u i , ub , and _ , it is necessary to use numerical methods.

Again the Runge-Kutta technique was used with the initial values:

v i = Rno(S r- sm) + . (186)

1 (_87)vb : _ p(Sr- sm) +

2

_] = Rno(Rno + CO)(s r- Sm) + . (188)

% + 2AI Rno (Rno CO) (Sr- Sm) +

(189)
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and

<2 BIo 1 Rn0ui =- (l-Rno) Rn0 Rno + Rm(l_Rno)/ Rm(l-Rno)
BIO-AI)

(19o)

3. Correlation with Experiment

The experimental case chosen for comparison with the above developed
51

theory was taken from a report by Strickfaden and Geiler. This par-

ticular set of data was chosen since it corresponds most closely with the

theoretical model in that the measurements were taken radially at a longi-

tudinal position where the cathode was still present and no longitudinal

accelerating potential was applied. From the data given, average values

of the following parameters necessary to obtain a theoretical solution

were obtained:

E
m

O

Since the beam energy over most of the radial distance was between

20 and 25 eV, and the amount of energy lost per ionizing collision is

approximately i0 eV, the number of ionizing collisions of the beam before

being Maxwellianized was taken to be three or P _ 3

The magnetic field given is 17 gauss which determines the value of

electron cyclotron frequency _ce = 2.99 X 107/sec

Since the pressure of operation is not given by Strickfaden and

Geiler, an estimate was made based on the total density of electrons and

on the fact that the percent ionization is quite high. The value of

pressure was assumed to be approximately one-tenth of a micron. The

average beam-neutral collision frequency was then calculated from the
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data given by Brown 37 to be

Vbn _ 2.5 X 106/sec

52
Using the experimental data of Nottingham, the ionization frequency

for the beam at approximately 0.i_ pressure and 20 eV is found to be

vI i05/b _ 5 X sec

The collision frequency for Maxwellian electrons colliding with neutral

atoms was taken from Crawford and Self 32 to be

v _ 2.5 × 106/sec
en

Finally the ratio of beam electrons to Maxwellian electrons at the

radial position of maximum normalized potential (s = Sm) was taken from

the experimental data as

%
0.3

n
m

which gives a value of

R
n

%

n°

i

- o.23

From the scaled drawing of the experimental ion source the ratio of outer

to inner diameter (in the region of the cylindrical cathode) was found to

be approximately 17:1. Using the above values of the parameters in the

equations governing this type of discharge the solutions shown in Figs.

49, 50, and 51 were obtained for the number densities of the various

components (ions, beam electrons, and Maxwellian electrons) as a function

of radial distance from the center of the discharge.

- 138 -



v

1.2

i.i

1.0

.8

.6

.5--

.3--

.2--

.i--

0

0

• Measured

/.

I t t I t n I I I
.2 .4 .6 ,8 1.0 1o2 1.4 1,6 1.8

FIG. 49--Calculated and measured Maxwe!lian electron

density as a function of radial position in
the Kaufman ion source.

139 -



lo0

"9--

.8--

"7--

.6--

_.5 --

.4--

• 3 --

.2

• l --

FIG.

• Measured

Calculated

@

l J I I i l l i l
.2 o4 .6 .8 1.o 1.2 1.4 1.6 1.8

S

50--lon density as a function of radial position in the

Kaufman ion source.

- 140 -



m

%(s)

1.3

1.2

i.i

1.0

.9

.8

.7

nb (Sm) .6

.5

.4

.3

.2

.i

0

• Measured

I I I I I I I I
.6 .8 i.o 1.2 1.4 1.6 1.8

6
FIG. 51--Calculated and measured beam electron density as a function

of radial position in the Kaufman ion source.

- 141



Considering the approximations madein the analysis and the uncer-
tainty in the pressure of operation, the results of Fig. 49 for the

Maxwellian electron density are amazingly close to the experimental

values also plotted in the figure.

The results of Fig. 50 which comparesthe theoretically calculated

and measuredvalues of ion density are also quite good, although it is

seen that the measured ion density begins to fall off more rapidly than

the calculated values as the edge of the discharge region is approached.

This discrepancy is due to the rather large variance in the calculated

and measuredvalues of beamelectron density shownin Fig. 51. Wesee

that the measuredvalue of beamdensity falls off muchmore rapidly than

the calculated values. However, we believe that there is a reasonable

explanation for this difference in the one dimensional approximation

made in the theoretical model. First, we have assumedthe cathode

extends over the full length of the discharge when in fact it only

extends over approximately 40_ of the discharge. Thus, the supply of

beamelectrons is not as large as we have assumed. Second, the discharge

is finite in length and the beamelectrons, because they are more energetic,

can be expected to supply most of the current to the walls and to the ends
of the discharge. Making a rough estimate of the loss of beamelectrons to

the ends of the discharge based on the area we would expect approximately

44_ of the beamto be lost to the ends of the discharge. Thus, the total

density of beamelectrons might reasonably be expected to fall off at a

rate muchhigher than that predicted by the theory. In fact we would
expect the density to be downgreater than 40_ from the calculated value.

Wethus conclude from the above comparisons of calculated and
measureddensities that the theoretical model does in fact approximate the

behavior of the Kaufmansource reasonably well and should be useful in

studying this type of discharge.
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CHAPTER VII

CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

The general modified pressure theory approach described in this

work has been shown to be applicable to a large number of one- and

two-dimensional dc discharges in the low and medium pressure regimes.

Not only is it possible to describe the parameters of two-component

plasmas but three-component (ion, neutral, and Maxwellian electrons;

ion, beam electron, and Maxwellian electrons) plasmas can also be

described using this same general approach. The effects of ion-neutral

collisions and an applied magnetic field can also be included without

any major modification of the theory.

Correlation with previous theoretical and experimental work shows

that this approach, although approximate, gives reasonably good agree-

ment with both previous theories and experiment for the parameters of

most interest in the study of plasmas.

Among the many areas which this work opens up for investigation

the following are suggested as being most profitable for further study:

(i) An extension of the theory to include Poisson's equation and

thus the sheath region of the discharges.

(2) Further improvement of the one-dimensional model of the

Kaufman ion source to include an electron beam velocity at the potential

minimum and perhaps three kinds of electrons.

(3) Further development of the one-dimensional theory to include

the spherical Langmuir probe as well as the cylindrical probe and a

general study of the application of the pressure theory approach to

probe theory in the presence of a magnetic field.

(4) A study of the effects of neutral density variations on the

parameters of a discharge with the neutral atoms diffusing off the walls

would be very interesting and useful in predicting current limiting in

low-pressure discharges.
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APPENDIX A

THE EFFECT OF NEUTRAL DENSITY VARIATION ON THE PARAMETERS

OF THE ONE-DIMENSIONAL DC DISCHARGE

In order to obtain an approximate idea of how the parameters change

when the neutral density is not uniform, we make the following assumptions:

(i) The degree of ionization is such that the discharge is not

dominated by electron-neutral collisions so that we still have

n e = neo ee_/kT

(2) Ion-neutral collisions are assumed to be much less frequent

than ionizing collisions.

(3) The neutral density variation is known and this variation is

maintained by a flow of neutral gas in a direction perpendicular

to the ion flow.

(4) Neutral gas velocity is much less than the ion velocity, i.e.,

v <<v.
g i

where v is the average neutral gas velocity.
g

(5) Kinetic pressure is neglected in the momentum transfer equation

for the ions.

The above assumptions would apply reasonably well to a discharge

where the ions are continually being drawn out of one end of the discharge

and the neutral gas continually supplied at the other end (Kaufman-like

ion source). However, the above assumptions would not apply to a "closed"

system where the neutral gas is being supplied by a flow from the walls

of the discharge.
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With the above assumptions the first two momentequations for the

ions becamefor a planar discharge with generation proportional to

electron density

d'nivi'(_ : n n jI (Aol)

dx g e

and

n.y. dv. e _
i i i + _I n n v. = - - n. -- . (A.2)

dx g e i M l_x

Expanding and normalizing Eqs. (A.1) and (A.2) we obtain

ql

and

where

dv I Vld _ ng(s)
= (A.3)

ds ds n

VldV1 ng(s) 1 d_
+ -- vI = , (A.4)

ds ngO 2 ds

ng 0 is the neutral gas density at s = 0 and ng(S) is a

known function of s Using Eq. (A.h) in Eq. (A.3) to eliminate

d_/ds we obtain

(_vi 2 "__)+ --dVlds= ng(S)ng0

(A._)

Integrating we obtain

_2 tan -I v I - v I

S

= J_ ng(S)

o ngo

ds (A.6)
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Let us suppose that the neutral variation is given by

= l- as

where "a" is an unspecified constant• This would be a reasonable

assumption for a Kaufmantype ion source being supplied with neutrals

from a point in the center of the discharge• Equation (A.6) then becomes

2
-- _ a_____s

_2 tan -I v I - v I s 2 (A.7)

Notice in Eq. (A.6) that the Bohm Criteria is still satisfied at the

"wall" where the velocity is

i

v10

We can thus find the distance to the "wall" by using the value of

vlO given above in Eq. (A.7) and then solving for sO When we do

this we obtain the result

i i

So = a a
i - 0.81a

The above equation has been solved for several values of the parameter

"a" corresponding to various values of the percent change in neutral

gas density between the center and edge of the discharge. The results

are shown in Table A.l._br this particular case a 12.9% change in the

neutral density only results in a 6.71% change in the "wall" distance.

We would also like to know how the "wall" potential _0 is affected.

Using Eq. (A.3) in Eq. (A.5) to eliminate nJng 0 , we find

4v_ dv I d_

2v_ + 1 ds ds
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TABLE A. I

Effect of Neutral Density Variation On Distance To "Wall"

a

0

0.i

0.2

0.3

so

o.4o3

o.42

o.425

o .430

' n_ -ng w

ng 0
, ,| ,, , ,,

0

4.2 
8.4 

12.9%
L....

or

dVl = dl]

This is the same result as obtained without neutral density variation

and thus the wall potential is not effected by a neutral density variation.

We conclude therefore that the assumption of uniform neutral gas

density is reasonably good as long as it is known that the variation is

less than approximately i0_ in going from the center to the edge of the

discharge. For large variations in the neutral gas density, large

errors in the discharge parameter will most certainly result.

4
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APPENDIX B

THE EFFECT OF INITIAL I0N VELOCITY ON THE PARAMETERS

OF THE ONE DIMENSIONAL DC DISCHARGE

In this work we have assumed that the ions are generated with zero

velocity. More accurately, we know that they are generated with a

Maxwellian distribution (M.D.) of velocity. In one dimension, the ion

distribution function at generation should be written as

M

2kT
M g

fgi(Wg) e= 2kT
g

2

g

where T is the background or neutral gas temperature, and w is
g g

the gas velocity.

If we again use the "moment method" of solution of the Boltzmann

equation we see that the equation of continuity is unchanged when the

initial velocity distribution is taken into account, since the generation

term will be

i1 = i =-aw -aw
a g a g

G --_e 5(W-Wg) dWg dw = G --_e dw
= G

In fact, as long as the generation function, G , does not depend on

the ion velocities, w , the equation of continuity is given by

d (nv) = G (B.I)
dx
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The momentum transfer equation is also unchanged since the momentum

change due to the generation term is given by

G F -aw 2iaw

W e 5(w-w~) dw dw -- G we
6

-_o -@o

dw = 0

The momentum transfer equation is thus given by

d (nv 2) + d (nu 2) e _x= - -- n
dx _ m (B.2)

m_

The equation of heat transfer has an additional term, given by

G w 2 e g 5 ( dw dw = G / w 2 _ e-aw2 GkTdw - g

M
-*DO

Thus we obtain

d d -- d --

-- (nv 3) + 3 -- (nvu2) + -- (nu3)

dx dx dx

-- 2e d_ kT
- -- nv-- + G --_g

M dx M

(B.3)

for the heat transfer equation. Using. the "standard" normalizations_

Eqs. (1), (2) and (3) become

dv
n _-_s- n v ds -- g (B.4)

I

d (n_) 1 -_ d__d (nv2) + asd-_ _ = _e

d d -- d

-- (nv 3) + 3- (nvu2) +- (nu3)

ds ds ds

Integrating (B.5) , we obtain

dn i T

nv--+--g --_

ds 2 T
e

2 u2 env +n = ---
2

+ C

(B.6)
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Now, when _ = 0 , we have v = 0 and we take

or

Therefore, we obtain

2

ul 0

U21o

M

kT

- --_ (un-normalized)

IT

g (normalized)

2 T
e

and

_ +-_

2 T
e

--{ ill T I --i

_/g -_ 2
nu = -- + - -- e - nv . (B.7)

2 Te 2

Normally we would neglect the heat flux term and solve for the dependent
2

variables v , u , and N However 9 for this case we cannot neglect

the heat flux term and still obtain consistent results at the origin.

We find a consistent value of d/dx (nuS) in the following manner.

We rewrite (B.6) in the form

d _ _ d m

nv (v2 + 3u2) + g (v2 (nu 3-- + 3uz ) + -- )
ds ds

d_l i T

= nv -- + -- g--_

ds 2 T
e

From symmetry, we know that v = 0 at the origin, and therefore

37 d -- i T(0) g + -- [n(O) u2(O)] - g -g

ds 2 T
e
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or

d -- 1 T 3 T

--(n_3)lo'_ g-_--g
__g

ds 2 T 2 T
e e

or

d -- T

--(nu3)Io = - g--g (B.8)
ds T

e

We cannot retain 7 as a variable since the equations will not then

-7
form a closed set, As a reasonable approximation we take u a constant

and equal to the value determined above to make the equations consistent

at the origin. When we do this (B.6) becomes [after substituting for g

2
from (B.4) and for u from (7)]

dv [.12v 2 + 3(e_ _ i) + _v(J ] - i)] = 0
V _ ( 4V _ + i + 3 IT ) + _ds

(B.9)

where

We now solve for v and

continuity we can solve for

T
g

T
e

near the origin.

d_/ds to get

d__ : dv - e(l-7)_]
ds ds

From the equation of

Using this in (B.9), we find that (after collecting terms)

dv

ds

e(l-7)_(4v2 + 1 + ]1-)

[-Sv 2 + 1 + _T + _(e I] - i) + _T(e TI - i)]
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From this equation we obtain

d_(O) _ + 3T -- 1 .

Similarly, we can obtain the first term in the expansion of

the origin. Since 1](0) = _1]/_s(O) = 0 , we know that

(B. i0)

near

2
I] = as + • • •

Keeping terms to second order in (B.9) , we obtain

I_ (1 + } T) sz1] - _ +.. (B.II)

Langmuir also has considered this problem. However, he only obtained a

solution near the origin. For the case T < < i he calculated

or

2

: _-<l-2n s +.n

2
1] = z.46 (1 - aT) s ,

where our calculation gives

2
1] = z.4 (1- 1.8J s + ,

The agreement is reasonably good. We can now solve (B.9) to see what

the effect of finite T will be on the potential, current, etc., at

the wall. Since T is normally much greater than T , we would
e g

expect the effect to be small. Solving for the parameters at the wall

for various ratios of TiT e = T , we obtain the values shown in

Table B.I (for 7 = O) Since T = T/T e would normally be expected

to be of the order of O.O1 the effect of initial ion temperature can
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be neglected as we have done in previous calculations.

TABLEB. i

Values of _0 and sO for Various Ratios of TZT e (7 = O)

0

o.o25

0.05

so

o. 345

o. 358

o. 351

_0

~ 0.786

~ O. 78O

~ 0.786
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APPENDIX C

LIMITATION OF THE SEPARATION OF VARIABLES TECHNIQUE

Consider the two equations governing the two-dimensional discharge

in the case where the kinetic pressure is taken to be equal to zero.

These two equations are

V • (n_) : G (C.I)

and

v • Vv+-v
n

e _ (C.Z)
m

Using the vector identity

2

v • Vv = _7_-- - v x V × v

(C.2) can also be written as

2

v.v_y+ e _, _ _ _-- - V XVXV +--V =
m n

o (c.3)

Let us now assume that V X v = 0 so that (C.3) becomes

2
e

v([-- + m _) + aT = 0 (C.4)

In order for (C.4) to be consistent we see by taking the curl it must be

true that
_4

v x _ = o (c._)
n
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Now

G = n F

so that Eq. (C.5) may be written as

_7 X (n7-I _) = 0

Using the vector identify V × _A = _V x A + _ × A on the above

equation we obtain

_-I v × _,+ (7 l) Di_×v = 0

which is zero only if

(7 - i)wxv = o . (c.6)

For the case 7 = i , Eq. (C.6) is always true but for 7 _ i ,

Eq. (C.6) cannot, in general, be shown to be equal to zero and there-

fore the assumption that V X v = 0 is not consistent in general for

any value of 7 except 7 = I , which corresponds to a generation

rate of ions proportional to electron density.

O
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APPENDIX D

DETERMINATION OF MAXIMUM TIME INTERVAL FOR CONVERGENCE

IN THE ONE-DIMENSIONAL CASE

To apply the method of characteristics, we write the one-dimensional

equations in the form

_ e(l - 7)U 8v _zyl+ -gi+v -- 0 (D. i)

and

8v e(1 - 7)_ _v i_
Yl + v+v_-_gi = 0 (D.2)

Equations (D.I) and (D.2) are then written in matrix form as

-e(i- _)nl

-v e(I - 7)

(D.3)

We then multiply the first term in Eq. (D.3) by k and form a matrix of the

coefficients of the various derivatives of _ and v to obtain the

matrix

][ v]X 0 v -i k + v -i

+ =

o x -1/2 v L_l/2 x +

We next take the determinant of this matrix and set it equal to zero,

to obtain

__l = O(x + v)z 2
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or

(D.4)

Now X is equal to _z/At and we wnat the maximum value of X such

that Eq. (D.4) is satisfied. From Eq. (D.4), using the fact that

V(max.) = i/_2 (Bohm Criteria), we obtain

i i

IX(=x.)l -- I(- v2 v_ )I -- g_

Since X = Az/At we obtain a value of _t given by

ax (D._)_t(_x. ) =

Thus_ for a given value of Ax in order to obtain convergence f_t

must be less than .707 times Ax

4"
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